cho góc nhọn alpha tùy ý giá trị biểu thức tan alpha/cota alpha+cotan alpha/tan alpha-sin2 alpha/cos2 alpha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1+cos2a-sin2a}{1+cos2a+sin2a}=\dfrac{2cos^2a-2sina.cosa}{2cos^2a+2sinacosa}\)
\(=\dfrac{2cosa\left(cosa-sina\right)}{2cosa\left(cosa+sina\right)}=\dfrac{cosa-sina}{cosa+sina}=\dfrac{\sqrt{2}sin\left(\dfrac{\pi}{4}-a\right)}{\sqrt{2}cos\left(\dfrac{\pi}{4}-a\right)}=tan\left(\dfrac{\pi}{4}-a\right)\)
\(\dfrac{1+cos2a-cosa}{sin2a-sina}=\dfrac{2cos^2a-cosa}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)
\(sin^6a+cos^6a=\left(sin^2x\right)^3+\left(cos^2x\right)^3\)
\(=\left(sin^2x+cos^2x\right)\left(sin^4x+cos^4x-sin^2x.cos^2x\right)\)
\(=sin^4x+2sin^2xcos^2x+cos^4x-3sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-\frac{3}{4}.\left(2sinx.cosx\right)^2\)
\(=1-\frac{3}{4}sin^22x=1-\frac{3}{4}\left(\frac{1}{2}-\frac{1}{2}cos4x\right)=\frac{5}{8}+\frac{3}{8}cos4x\)
2/
\(\frac{1+sin2a-cos2a}{1+cos2a}=\frac{1+2sina.cosa-\left(1-2sin^2a\right)}{1+2cos^2a-1}=\frac{2sina.cosa+2sin^2a}{2cos^2a}\)
\(=\frac{2sina.cosa}{2cos^2a}+\frac{2sin^2a}{2cos^2a}=tana+tan^2a\)
sin a=3/5
=>cos a=4/5
tan a=3/5:4/5=3/4; cot a=1:3/4=4/3
M=(4/3+3/4):(4/3-3/4)=25/7
\(P=\dfrac{2sin\alpha-3cos\alpha}{3sin\alpha+2cos\alpha}\\ =\dfrac{\dfrac{2sin\alpha}{cos\alpha}-\dfrac{3cos\alpha}{cos\alpha}}{\dfrac{3sin\alpha}{cos\alpha}+\dfrac{2cos\alpha}{cos\alpha}}\\ =\dfrac{2tan\alpha-3}{3tan\alpha+2}=\dfrac{2.3-3}{3.3+2}=\dfrac{3}{11}\)
Ta có: \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\quad (\alpha \ne {90^o})\)
\( \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = 1 + {3^2} = 10\)
\( \Leftrightarrow {\cos ^2}\alpha = \frac{1}{{10}} \Leftrightarrow \cos \alpha = \pm \frac{{\sqrt {10} }}{{10}}\)
Vì \({0^o} < \alpha < {180^o}\) nên \(\sin \alpha > 0\).
Mà \(\tan \alpha = 3 > 0 \Rightarrow \cos \alpha > 0 \Rightarrow \cos \alpha = \frac{{\sqrt {10} }}{{10}}\)
Lại có: \(\sin \alpha = \cos \alpha .\tan \alpha = \frac{{\sqrt {10} }}{{10}}.3 = \frac{{3\sqrt {10} }}{{10}}.\)
\( \Rightarrow P = \dfrac{{2.\frac{{3\sqrt {10} }}{{10}} - 3.\frac{{\sqrt {10} }}{{10}}}}{{3.\frac{{3\sqrt {10} }}{{10}} + 2.\frac{{\sqrt {10} }}{{10}}}} = \dfrac{{\frac{{\sqrt {10} }}{{10}}\left( {2.3 - 3} \right)}}{{\frac{{\sqrt {10} }}{{10}}\left( {3.3 + 2} \right)}} = \dfrac{3}{{11}}.\)
\(\frac{tan\alpha}{cot\alpha}+\frac{cot\alpha}{tan\alpha}-\frac{sin^2\alpha}{cos^2\alpha}\)
= \(\frac{sin\alpha}{cos\alpha}:\frac{cos\alpha}{sin\alpha}+\frac{cos\alpha}{sin\alpha}:\frac{sin\alpha}{cos\alpha}-\frac{sin^2\alpha}{cos^2\alpha}\)
= \(\frac{cos^2\alpha}{sin^2\alpha}=cot^2\alpha\)
Bạn gõ lại đề dc ko chứ mk đọc đề bài của bạn mà lú luôn............