K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2022

-Để mình suy nghĩ ngồi làm cho bạn nhé.

13 tháng 2 2022

-Vì bài dài quá nên mình nói tóm tắt:

a) -Bạn chứng minh △ABM = △BCN (g-c-g) do có \(AB=BC\) , \(\widehat{BCN}=\widehat{ABM}=90^0\),\(\widehat{NBC}=\widehat{MAB}\) (bạn tự chứng minh).

-Suy ra: \(BM=CN\) .

-Suy ra 2 điều:

+\(QM^2-BQ^2=MN^2-MC^2\)

+\(QM+BQ=MN+MC\) (1)

\(QM^2-BQ^2=MN^2-MC^2\)

\(\Rightarrow\left(QM-BQ\right)\left(QM+BQ\right)=\left(MN-MC\right)\left(MN+MC\right)\)

\(\Rightarrow QM-BQ=MN-MC\) (2)

-Từ (1),(2) suy ra \(QM=MN\) nên △BMQ=△CNM (ch-cgv).

\(\Rightarrow\) MQ vuông góc với MN (bạn tự c/m).

\(QM=MN\) nên \(BQ=MC\) nên \(AQ=BM\Rightarrow PQ^2-AP^2=QM^2-BQ^2;QM+BQ=PQ+AP\)

Nên \(PQ=QM;\Delta APQ=\Delta BQM\) nên PQ⊥QM ; AP=BQ nên PQ=AQ

-Từ PQ=AQ bạn tự c/m PN=PQ (theo sườn mình đã cho) rồi sau đó c/m tam giác APQ=tam giác DNP rồi từ đó suy ra PQ vuông góc PN

.......

 

5 tháng 4 2022

Với p = 2 => 8p2  +1 = 33 (loại)

Với p = 3 => 8p2 + 1 = 73 (tm)

Với p > 3 => Đặt p = 3k + 1 ; p = 3k + 2 (k \(\in Z^+\)

Với p = 3k + 1 => 8p2 + 1 = 8(3k + 1)2 + 1 

= 72k2 + 48k + 9 = 3(24k2 + 16k + 3) \(⋮3\)(loại)

Với p = 3k + 2 => 8p2 + 1 = 8(3k + 2)2 + 1 

= 72k2 + 96k + 33 = 3(24k2 + 32k + 11) \(⋮3\)(loại)

Vậy p = 3 thì 8p2 + 1 \(\in P\)

NV
5 tháng 4 2022

- Với \(p=2\) ko thỏa mãn

- Với \(p=3\Rightarrow8p^2+1=73\) là số nguyên tố (thỏa mãn)

- Với \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)

\(\Rightarrow p^2=3k+1\)

\(\Rightarrow8p^2+1=8\left(3k+1\right)+1=24k+9=3\left(8k+3\right)\) là số lớn hơn 3 và chia hết cho 3

\(\Rightarrow8p^2+1\) là hợp số (ktm)

Vậy \(p=3\) là SNT duy nhất thỏa mãn yêu cầu

NV
6 tháng 4 2022

Đặt \(a=p^q+7q^p\)

Nếu p; q đều bằng 2 \(\Rightarrow a=2^2+7.2^2\) là hợp số (ktm)

Nếu p; q cùng lớn hơn 2 \(\Rightarrow p^q\) và \(q^p\) đều lẻ

\(\Rightarrow a=p^q+7q^p\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (ktm)

\(\Rightarrow\) Có đúng 1 số trong p; q phải bằng 2, số còn lại là SNT lẻ

TH1: \(p=2\Rightarrow a=2^q+7.q^2\)

- Nếu \(q=3\Rightarrow a=2^3+7.3^2=71\) là SNT (thỏa mãn)

- Nếu \(q>3\Rightarrow q^2\equiv1\left(mod3\right)\Rightarrow7q^2\equiv1\left(mod3\right)\)

\(2^q=2^{2k+1}=2.4^k\equiv2\left(mod3\right)\)

\(\Rightarrow a=2^q+7.q^2\equiv2+1\left(mod3\right)\Rightarrow a⋮3\) là hợp số (ktm)

TH2: \(q=2\Rightarrow a=p^2+7.2^p\)

- Nếu \(p=3\Rightarrow a=3^2+7.2^3=65\) ko phải SNT (ktm)

- Nếu \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)

\(7.2^p=7.2^{2k+1}=14.4^k\equiv2\left(mod3\right)\)

\(\Rightarrow p^2+7.2^p⋮3\) là hợp số (ktm)

Vậy \(\left(p;q\right)=\left(2;3\right)\) là cặp SNT duy nhất thỏa mãn yêu cầu

6 tháng 4 2022

Đây là bài toán rất khó về đồng dư thức, em cám ơn thầy Lâm đã giải rất cẩn thận ạ!

Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{A}\) chung

Do đó: ΔAEB∼ΔAFC

Suy ra: AE/AF=AB/AC

hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AB=AF/AC
góc A chung

Do đó: ΔAEF∼ΔABC

Suy ra: \(\widehat{AEF}=\widehat{ABC}\)

Xét p=2\(\Rightarrow p^4+29=45=3^2.5\), có 6 ước số là SND, loại

Xét p=3\(\Rightarrow p^4+29=110=2.5.11\), có 8 ước số là SND, tm

Xét p=5\(\Rightarrow p^4+29=654=2.3.109\) , có 8 ước số là SND, tm

Xét p\(\ge6\). Do p là SNT nên p có dạng \(6k+1\) hoặc \(6k-1\) (k\(\in N\)*)

TH1: p=6k+1

Khi đó ta có \(p^4+29=\left(6k+1\right)^4+29\equiv1+29\equiv0\left(mod6\right)\)

Ta cũng có: \(p^4+29=\left(6k+1\right)^4+29\equiv0\left(mod5\right)\)

vì \(\left(6k+1\right)⋮5̸\)

\(\Rightarrow p^4+29=6.5.a=2.3.5.a\)(a là STN)\(\Rightarrow p^4+29\) có nhiều hơn 8 ước số  nguyên dương, loại.

TH2: p=6k-1. Chứng minh tương tự ta thấy không có p thoả mãn

\(\Rightarrow p\ge6\) không thoả mãn

Vậy....