Cho a,b,c,d là 4 số thực dương thỏa mãn a+b+c+d=1.CMR:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1. Áp dụng BĐT AM-GM :
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}\)
\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}=\frac{1}{2}\)
Cách 2. Áp dụng BĐT Cauchy : \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)
Tương tự : \(\frac{b^2}{b+c}+\frac{b+c}{4}\ge b\) , \(\frac{c^2}{c+d}+\frac{c+d}{4}\ge c\), \(\frac{d^2}{d+a}+\frac{d+a}{4}\ge d\)
Cộng theo vế : \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}+\frac{1}{4}.2.\left(a+b+c+d\right)\ge a+b+c+d\)
\(\Leftrightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}=\frac{1}{2}\)
Làm bài này một hồi chắc bay não:v
Bài 1:
a) Áp dụng BĐT AM-GM:
\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b = c.
b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.
Bài 2:
a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v
b) Theo BĐT Bunhicopxki:
\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)
Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)
Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:
\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)
Ta có:
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)=\frac{b+d}{2bd}\)
\(\Rightarrow2bd=c\left(b+d\right)\left(2\right)\)
Do b là TBC của a và c nên \(b=\frac{a+c}{2}\)
Thay vào (1) ta có: \(2.\frac{a+c}{2}.d=c.\left(\frac{a+c}{2}+d\right)\)
=> (a + c).d = \(\frac{c.\left(a+c+2d\right)}{2}\)
=> (a + c).2d = c.(a + c + 2d)
=> 2ad + 2cd = ac + c2 + 2cd
=> 2ad = ac + c2 = c.(a + c) = c.2b
=> ad = bc
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Làm tạm một câu rồi đi chơi, lát làm cho.
4)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Phạm Minh Quang Vũ Minh Tuấn kudo shinichi Lê Thị Thục Hiền Akai Haruma Nguyễn Huy Thắng Nguyễn Thị Diễm Quỳnh Băng Băng 2k6 giúp với ạ mình cần gấp lắm
Áp dụng bđt Cosi ta có: \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2;\frac{b^2}{b+c}+\frac{b+c}{4}\ge2;\frac{c^2}{c+d}+\frac{c+d}{4}\ge2\)\(;\frac{d^2}{d+a}+\frac{d+a}{4}\ge2\)
Cộng theo vế và a+b+c+d=1 ta có đpcm
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{a^2}{a+b}=\frac{a+b}{4};\frac{b^2}{b+c}=\frac{b+c}{4};\frac{c^2}{c+d}=\frac{c+d}{4};\frac{d^2}{d+a}=\frac{d+a}{4}\\\\a=b=c=1\end{cases}}\)
\(\Leftrightarrow a=b=c=d=\frac{1}{4}\)
Bunyakovsky dạng phân thức