K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2021

- Xét phương trình hoành độ giao điểm : \(x^2=2mx-2m+3\)

\(\Leftrightarrow x^2-2mx+2m-3=0\left(I\right)\)

- Xét thấy để P và d cắt nhau tại hai điểm phân biệt khi PT ( I ) có hai nghiệm phân biệt .

\(\Leftrightarrow\Delta^,=b^{,2}-ac=m^2-\left(2m-3\right)>0\)

\(\Leftrightarrow m^2-2m+3>0\)

\(m^2-2m+3=m^2-2m+1+2=\left(m+1\right)^2+2\ge2>0\forall m\in R\)

Vậy ... ĐPCM

 

15 tháng 5 2019

b) Phương trình hoành độ giao điểm của (P) và (d) là:

- x 2  = 2mx - 5 ⇔  x 2  + 2mx - 5 = 0

Δ'= m 2 + 5 > 0 với ∀m ∈ R

Vậy trên mặt phẳng Oxy đường thẳng (d) và Parabol (P) luôn cắt nhau tại hai điểm phân biệt.

Khi m = 2, phương trình hoành độ giao điểm của (P) và (d) là:

- x 2 = 4x - 5 ⇔ x 2  + 4x - 5 = 0

Δ = 4 2  - 4.1.(-5) = 36

⇒ Phương trình có 2 nghiệm

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy tọa độ hai giao điểm là M(1;-1) và N(-5;-25)

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm:

\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)

a. Khi \(m=-1\), (1) trở thành:

\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)

Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)

b. 

\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m

Hay (d) cắt (P) tại 2 điểm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)

\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)

\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=2\left(m-1\right)x+5-2m\)

\(\Leftrightarrow x^2-2\left(m-1\right)x-5+2m=0\)

Áp dụng hệ thức Vi-et, ta được:

\(x_1+x_2=2\left(m-1\right)\)

Ta có: \(x_1+x_2=6\)

\(\Leftrightarrow2\left(m-1\right)=6\)

\(\Leftrightarrow m-1=3\)

hay m=4

Vậy: m=4

12 tháng 7 2020

a, Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình:

\(x^2=2mx+1\)

\(\Leftrightarrow x^2-2mx-1=0\)

Ta có: \(\Delta'=\left(-m\right)^2-1.\left(-1\right)=m^2+1\)

\(m^2\ge0\forall m\Rightarrow\) \(m^2+1\ge1>0\forall m\) \(\Leftrightarrow\Delta'>0\forall m\)

Vậy với mọi m thì đường thẳng (d) và parabol (P) cắt nhau tại 2 điểm phân biệt.

loading...  loading...  loading...  loading...  loading...  loading...  loading...