CHO BIỂU THỨC M= X2- 5 / X2- 2 (X THUỘC Z) TÌM SỐ NGUYÊN X ĐỂ M LÀ SỐ NGUYÊN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(M=\frac{2\left|x-3\right|}{x^2+2x-15}=\frac{2\left|x-3\right|}{\left(x^2+2x+1\right)-16}=\frac{2\left|x-3\right|}{\left(x+1\right)^2-16}=\frac{2\left|x-3\right|}{\left(x+1\right)^2-4^2}=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}\)
+) Nếu \(x-3\ge0\) \(\Rightarrow\) \(x\ge3\) ta có :
\(M=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}=\frac{2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{2}{x+5}\)
+) Nếu \(x-3< 0\)\(\Rightarrow\)\(x< 3\) ta có :
\(M=\frac{2\left|x-3\right|}{\left(x+5\right)\left(x-3\right)}=\frac{-2\left(x-3\right)}{\left(x+5\right)\left(x-3\right)}=\frac{-2}{x+5}\)
Vậy : +) Nếu \(x\ge3\) thì \(M=\frac{2}{x+5}\)
+) Nếu \(x< 3\) thì \(M=\frac{-2}{x+5}\)
Chúc bạn học tốt ~
ta có: \(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M có giá trị nguyên
=> 3/x^2 - 2 thuộc Z
=> 3 chia hết cho x^2 - 2
=> x^2-2 thuộc Ư(3)={1;-1;3;-3}
nếu x^2-2 = 1 => x^2 = 3 \(\Rightarrow x=\sqrt{3};x=-\sqrt{3}\) (Loại)
x^2-2 = -1 => x^2 = 1 => x = 1 hoặc x = -1 (TM)
x^2-2 = 3 => x^2 = 5 \(\Rightarrow x=\sqrt{5};x=-\sqrt{5}\) (Loại)
x^2-2 = -3 => x^2 = -1 => không tìm được x
KL:...
Δ=(2m-2)^2-4(2m-5)
=4m^2-8m+4-8m+20
=4m^2-16m+24
=4m^2-16m+16+8=(2m-4)^2+8>=8>0 với mọi m
=>Phương trình luôn có hai nghiệm phân biệt
\(B=\dfrac{x_1^2}{x^2_2}+\dfrac{x_2^2}{x_1^2}\)
\(=\dfrac{x_1^4+x_2^4}{\left(x_1\cdot x_2\right)^2}=\dfrac{\left(x_1^2+x_2^2\right)^2-2\left(x_1\cdot x_2\right)^2}{\left(x_1\cdot x_2\right)^2}\)
\(=\dfrac{\left[\left(2m-2\right)^2-2\left(2m-5\right)\right]^2-2\left(2m-5\right)^2}{\left(2m-5\right)^2}\)
\(=\dfrac{\left(4m^2-8m+4-4m+10\right)^2}{\left(2m-5\right)^2}-2\)
\(=\left(\dfrac{4m^2-12m+14}{2m-5}\right)^2-2\)
\(=\left(\dfrac{4m^2-10m-2m+5+9}{2m-5}\right)^2-2\)
\(=\left(2m-1+\dfrac{9}{2m-5}\right)^2-2\)
Để B nguyên thì \(2m-5\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(m\in\left\{3;2;4;1;7\right\}\)
Đk để pt trên có 2 nghiệm phân biệt x1,x2 : a>0 và denta>0
suy ra denta= (2m+1)^2-4.(m^2+1)>0
suy ra : m>3/4
Ta có P=x1x2/x1+x2=(m^2+1)/(2m+1)
Ta có: P∈Z
⇒4P∈Z
⇒(4m^2+4)/2m+1=(2m-1)+5/2m+1∈Z
⇒2m+1=Ư(5)={−5;−1;1;5}
⇒m={−3;−1;0;2}
Kết hợp đk m>3/4 ta được m=2
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
\(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M nguyên => \(\frac{3}{x^2-2}\)nguyên
=> \(3⋮x^2-2\)
=> \(x^2-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Vì x thuộc Z => x = \(\pm1\)
Bài làm:
\(M=\frac{x^2-5}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M là số nguyên => \(\frac{3}{x^2-2}\inℤ\Rightarrow x^2-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x^2\in\left\{-1;1;3;5\right\}\Rightarrow x\in\left\{-1;1\right\}\)
Vậy x = 1 hoặc x = -1 thì M nguyên