K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2020

\(a,(x^3-x+1)(2x+1)+(x-1)(x+2)\)

\(=2x^4-2x^2+2x+x^3-x+1+x^2-x+2x-2\)

\(=2x^4+x^3+(-2x^2+x^2)+(2x-x-x+2x)+(1-2)\)

\(=2x^4+x^3-x^2+2x-1\)

\(b,(2x+a)(2x-3a)-5a(x+3)\)

\(=4x^2+2ax-6ax-3a^2-5ax-15a\)

\(=4x^2+(2ax-6ax-5ax)-3a^2-15a\)

\(=4x^2-9ax-3a^2-15a\)

Chúc bạn học tốt

a, \(\left(x^3-x+1\right)\left(2x+1\right)+\left(x-1\right)\left(x+2\right)\)

\(=2x^4+x^3-2x^2-x+2x+1+x^2+2x-x-2\)

\(=2x^4+x^3-x^2+2x-1\)

b, \(\left(2x+a\right)\left(2x-3a\right)-5a\left(x+3\right)\)

\(=4x^2-6xa+2ax-3a^2-5ax-15a\)

\(=4x^2-9ax-3a^2-15a\)

18 tháng 4 2021

câu 1

a, P(x)=\(5x^2-2x^4+2x^3+3\)

  \(P\left(x\right)=-2x^4+2x^3+5x^2+3\)

\(Q\left(x\right)=2x^4-5x^2-x+1-2x^3\)

\(Q\left(x\right)=2x^4-2x^3-5x^2-x+1\)

b, Ta có A(x)=P(x)+Q(x)

thay số A(x)=\(\left(-2x^4+2x^3+5x^2+3\right)+\left(2x^4-2x^3-5x^2-x+1\right)\)

                   =\(-2x^4+2x^3+5x^2+3+2x^4-2x^3-5x^2-x+1\)

                   \(=-x+4\)

c, A(x)=0 khi 

\(-x+4=0\)

\(x=4\)

vậy no của đa thức là 4

câu 2

tự vẽ hình nhé 

a, xét \(\Delta\) ABC cân tại A có AD là pg 

=> AD vừa là dg cao vừa là đg trung tuyến ( t/c trong tam giác cân )

xét \(\Delta\) ADB vg tại D ( áp dụng định lí Py ta go trong tam giác vg ) có 

\(AB^2=BD^2+AD^2\\ \Rightarrow BD^2=9\Rightarrow BD=3\)

Ta có D là trung đm của BC ( AD là đg trung tuyến ứng vs BC) 

=> BD=CD=\(\dfrac{1}{2}BC\)

=> BC= 6cm

câu b đang nghĩ 

26 tháng 4 2022

\(a,\) Sắp xếp 

\(A\left(x\right)=2x^3-3x^2+2x+1\)

\(B\left(x\right)=3x^3+2x^2-x-5\)

\(b,A\left(x\right)+B\left(x\right)=2x^3-3x^2+2x+1+3x^3+2x^2-x-5\)

                         \(=5x^3-x^2+x-4\)

\(c,A\left(x\right)-B\left(x\right)=2x^3-3x^2+2x+1-3x^3-2x^2+x+5\)

                          \(=-x^3-5x^2+3x+6\)

2 tháng 5 2022

a)\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)

\(P\left(x\right)=x^4+3x-\dfrac{1}{9}-x+3x^4+2x^2+8x-2x^3+2x^3+\dfrac{2}{3}+4x-4x^4-\dfrac{1}{3}\)

\(P\left(x\right)=2x^2+\dfrac{2}{9}+14x\)

 

 

 

2 tháng 5 2022

rối lắm luôn

12 tháng 6 2021

a) f(x) = 3x3-2x2+7x-1

g(x) = x2+4x-1

b) h(x) = 3x3-2x2+7x-1-x2-4x+1

            = 3x3-3x2+3x

h(x) = 3x3-3x2+3x=0

       ⇒ 3(x3-x2+x)=0

       ⇒ x3-x2+x=0

đến đây mik ko biết làm nữa

a: \(M\left(x\right)=3x^5-2x^3+x^2-6\)

\(N\left(x\right)=-x^4+3x^3-4x^3-2x^2+\dfrac{1}{3}=-x^4-x^3-2x^2+\dfrac{1}{3}\)

20 tháng 3 2023

a) Ta có:

\(f\left(x\right)=2x^3-x^5+3x^4+x^2-\dfrac{1}{2}x^3+3x^5-2x^2-x^4+1\)

\(f\left(x\right)=\left(-x^5+3x^5\right)+\left(3x^4-x^4\right)+\left(2x^3-\dfrac{1}{2}x^3\right)+\left(x^2-2x^2\right)+1\)

\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)

Sắp xếp đa thức f(x) the lũy thừa giảm dần của biến, ta được:

\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)

b) Bậc của đa thức f(x) là 5

c) Ta có:

\(f\left(1\right)=2\cdot1^5+2\cdot1^4+\dfrac{3}{2}\cdot1^3-1^2+1=5,5\) . Vậy f(1) = 5,5.

\(f\left(-1\right)=2\cdot\left(-1\right)^5+2\cdot\left(-1\right)^4+\dfrac{3}{2}\cdot\left(-1\right)^3-\left(-1\right)^2+1=-1,5\). Vậy f(-1) = -1,5.

a: \(P\left(x\right)=5x^5-4x^4+2x^2+3x+6\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2+x+\dfrac{1}{4}\)

b: \(P\left(x\right)+Q\left(x\right)=4x^5-2x^4-2x^3+5x^2+4x+\dfrac{25}{4}\)

a: \(C\left(x\right)=x^3+3x^2-x+6\)

\(D\left(x\right)=-x^3-2x^2+2x-6\)

b: Bậc của C(x) là 3

Hệ số tự do của D(x) là -6

c: \(C\left(2\right)=8+3\cdot4-2+6=20-2+6=24\)

d: \(C\left(x\right)+D\left(x\right)=x^2+x\)

a. C(x)=x3+3x2−x+6

D(x)=−x3−2x2+2x−6

b. Bậc của C(x) là 3

Hệ số tự do của D(x) là -6

c. C(2)=8+3⋅4−2+6=20−2+6=24

d.