K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 7 2020

Lời giải:

$a^{2018}+b^{2018}=a^{2020}+b^{2020}$

$\Leftrightarrow a^{2018}(a^2-1)+b^{2018}(b^2-1)=0(*)$

Xét các TH sau:

TH1: $a^2-1>0; b^2-1>0\Leftrightarrow (a-1)(a+1)>0; (b-1)(b+1)>0$

$\Leftrightarrow a>1; b>1$

$\Rightarrow a^{2018}(a^2-1)+b^{2018}(b^2-1)>0$ (trái với $(*))$

TH2: $a^2-1< 0; b^2-1< 0$ thì $a^{2018}(a^2-1)+b^{2018}<0$ (trái với $(*))$

TH3: $b^2-1\leq 0\leq a^2-1$ (TH $b^2-1>0>a^2-1$ tương tự do vai trò $a,b$ như nhau)

$\Rightarrow b\leq 1\leq a\Rightarrow b^2\leq a^2$

Từ $(*)\Rightarrow 0=a^{2018}(a^2-1)+b^{2018}(b^2-1)\geq b^{2018}(a^2-1)+b^{2018}(b^2-1)$

$\Leftrightarrow 0\geq b^{2018}(a^2+b^2-2)$

$\Leftrightarrow a^2+b^2\leq 2$

Do đó, theo BĐT AM-GM:

$P=a^2+b^2+2+2(a+b)\leq a^2+b^2+2+2\sqrt{2(a^2+b^2)}\leq 2+2+2\sqrt{2.2}=8$

Vậy $P_{\min}=8$ khi $a=b=1$

8 tháng 4 2018

gọi số cần tìm là a.ta có:a=4n+3

                                         =17m+9

                                         =19k+13

\(\Rightarrow a+25=4n+3+25=4n+28=4\left(n+7\right)⋮4\)   

                       \(=17m+9+25=17m+34=17\left(m+2\right)⋮17\) 

                         \(=19k+13+25=19k+38=19\left(k+2\right)⋮19\)

\(\Rightarrow a+25⋮17,4,19\)

\(\Rightarrow a+25⋮1292\)

\(\Rightarrow a=1292k-25\)\(=1292\left(k-1\right)+1267\)

do 1267<1292 nên số dư của phép chia là 1267

2,

gọi ƯCLN[2n+1,2n(n+1)] là d

\(\Rightarrow2n+1⋮d,2n\left(n+1\right)⋮d\)

\(\Rightarrow n\left(2n+1\right)⋮d,2n^2+2n⋮d\)

\(\Rightarrow2n^2+n⋮d,2n^2+2n⋮d\)

\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\)

\(\Rightarrow n⋮d\)

MÀ \(2n+1⋮d,n⋮d\Rightarrow2n⋮d\Rightarrow1⋮d\Rightarrow d=1\)

suy ra đpcm

8 tháng 4 2018

thank you bạn nhiều nha !!!!!!!!!!!!

17 tháng 5 2017

Theo bài ra ta có:

A=4a+3

=17b+9              (a,b,c \(\in N\))

=19c+13

Mặt khác: A+25 = 4a+3+25=4a+28=4(a+7)

=17b+9+25=17b+34=17(b+2)

=19c+13+25=19c+38=19(c+2)

Như vậy A+25 chia hết cho 4;17;19 (vì có chứa thừa số 4;17 và 19). Mà (4;17;19) = 1 \(\Rightarrow\)A+25 chia hết cho 1292

\(\Rightarrow\)A+25=1292k (\(k\in\)N*)

\(\Rightarrow\)A=1292k - 25 = 1292k - 1292 + 1267 = 1292(k-1)+1267

Do1267<1292 nên 1267 là số dư trong phép chia a cho 1292


 

17 tháng 5 2017

Goi số đã cho là A ta có

A=4a+3

  =  17b+9

  =19c+13

măt khác A+25=4a+3+25=4a+28=4.(a+7)

                      =17b+9+25=17b+34=17(b+2)

                     =19c+13+25=19c+28=19.(c+2)

..................................................................................

         K mk đi mk giải tiếp cho

Bài 2: 

Sửa đề: chia 23 dư 7

Vì a chia 17 dư 1 nên a-16 chia hết cho 17

Vì a chia 23 dư 7 nên a-16 chia hết cho 23

Vậy: a chia 391 dư 16

7 tháng 7 2021

Em Cảm ơn Anh

Số nào chia 17 mà dư 19 =_=

18 tháng 1 2020

Gọi số đã cho là A.Ta có:
A = 4a + 3 
 = 17b + 9          (a,b,c thuộc N)
 = 19c + 3 
Mặt khác: A + 25 = 4a+3+25=4a+28=4(a+7)
                 =17b+9+25=17b+34=17(b+2)
                =19c+13+25=19c+38=19(c+2)
Như vậy A+25 đồng thời chia hết cho 4,17,19.Mà (4;17;19)=1=>A+25 chia hết cho 1292.
=>A+25=1292k(k=1,2,3,....)=>A=1292k-25=1292k-1292+1267=1292(k-1)+1267.
Do 1267<1292 nên 1267 là số dư trong phép chia số đã cho A cho 1292.

27 tháng 3 2015

4.17.19= 1292

 Số dư là : 3.9.13=351

Mình không chắc

18 tháng 12 2016

351 là sai rồi bạn. Bài này mình gặp rồi. Đáp án đúng la 1267

Cách làm 

Gọi số đó là a

a= 4p+3 = 17m+9= 19n+13 
a+25 =4p+28= 17m+34 =19n+38 
a+25 chia hết cho 4, 17, 19 
a+25 chia hết cho 4.17.19 =1292 
Vậy a chia 1292 dư (1292-25) = 1267

12 tháng 3 2018

gọi số đó là A : ta có : 
A= 4p+3 = 17m+9= 19n+13 
A+25 =4p+28= 17m+34 =19n+38 
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19 
vậy A+25 chia hết cho 4.17.19 =1292 
A chia 1292 dư (1292-25) = 1267

:3

12 tháng 3 2018

gọi số đó là A : ta có : 

A= 4p+3 = 17m+9= 19n+13 
A+25 =4p+28= 17m+34 =19n+38 
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19 
vậy A+25 chia hết cho 4.17.19 =1292 
A chia 1292 dư (1292-25) = 1267