cho S = 3+3^2+3^3+...+3^1998+3^1999.Tìm số dư khi chia S cho 26
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta sẽ xét S chia 13 và 2 (vì 13 và 2 là 2 số nguyên tố cùng nhau)
Vì S là một lũy thừa của 3 nên S chia 2 dư 1
Xét S chia 13
Ta có:S=3+32+33+34+.....+31998+31999
S=3.(1+3+32)+34.(1+3+32)+.......+31997.(1+3+32)
S=3.13+34.13+......+31997.13
S=13.(3+34+....+31997)⋮13
Vì S chia 2 dư 1 và S⋮13
nên S chia 26 dư 1
Nhớ tick cho mình nha!!!!!!!!!!!!
Ta có:
\(S=(3+3^2+3^3+3^4+3^5+3^6)+(3^7+3^8+3^9+3^{10}+3^{11}+3^{12}) +...+(3^{1993}+3^{1994}+3^{1995}+3^{1996}+3^{1997}+3^{1998})+3^{1999}\)(333 nhóm)
=3.364+37.364+...+31993.364+31999=364.(3+37+...+31993)+31999 chia 26 dư 1
dãy số trên ko thể chia hết cho 26 nha
xem lại đề nhé
cảm ơn
nếu đúng dề mk sẽ giải
ban nguyen quang tung co gang duoc khong? minh dang can gap
Câu 1 :
a) Ta có : S=5+52+53+...+52006
5S=52+53+54+...+52007
\(\Rightarrow\)5S-S=(52+53+54+...+52007)-(5+52+53+...+52006)
\(\Rightarrow\)4S=52007-5
\(\Rightarrow S=\frac{5^{2007}-5}{4}\)
b) Ta có : S=5+52+53+...+52006
=(5+53)+(52+54)+...+(52004+52006)
=5(1+52)+52(1+52)+...+52004(1+52)
=5.26+52.26+...+52004.26\(⋮\)26
Vậy S\(⋮\)26
Câu 2 :
Gọi số cần tìm là : a. Điều kiện : a\(\in\)N*.
Vì a chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3 và chia cho 6 dư 4 nên ta có ; a-1\(⋮\)3 ; a-2\(⋮\)4 ; a-3\(⋮\)5 và a-4\(⋮\)6
\(\Rightarrow\)a-1+3\(⋮\)3 ; a-2+4\(⋮\)4 ; a-3+5\(⋮\)5 ; a-4+6\(⋮\)6
\(\Rightarrow\)a+2 chia hết cho cả 3, 4, 5 và 6
\(\Rightarrow\)a+2\(\in\)BC(3,4,5,6)
Ta có : 3=3
4=22
5=5
6=2.3
\(\Rightarrow\)BCNN(3,4,5,6)=22.3.5=60
\(\Rightarrow\)BC(3,4,5,6)=B(60)={0;60;120;180;240;300;...}
\(\Rightarrow\)a\(\in\){-2;58;118;178;238;298;358;418;...}
Mà theo đề bài, a nhỏ nhất và chia hết cho 11
\(\Rightarrow\)a=418
Vậy số cần tìm là 418
S=1-3+3\(^2\)-....+3\(^{98}\)-3\(^{99}\)(1)
\(\Rightarrow\)3S=3-3\(^2\)+3\(^3\)+...+3\(^{99}\)-3\(^{100}\)(2)
Từ(1)và(2)\(\Rightarrow\)4S=1-3\(^{100}\)
Do S chia hết cho -20\(\Rightarrow\)4S chia hết cho -20
\(\Rightarrow\)4S chia hết cho 4\(\Rightarrow\)1-3\(^{100}\)chia hết cho 4
\(\Rightarrow\)3\(^{100}\)chia hết 4 dư 1
S= (1999+1999^2+1999^3 +....+1999^1998)
=(1999+1999^2)+(1999^3+1999^4)+...+(1999^1997+1999^1998)
=1999(1+1999)+1999^3(1+1999)+...+1999^1997(1+1999)
=1999.2000+1999^3.2000+...+1999^1997.2000
=2000(1999+1999^3+...+1999^1997) CHIA HET CHO 2000
Vậy S chia het cho 2000(đpcm)