K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

1) Thay x=3 vào đẳng thức, thu được:

               \(3\times f\left(3+2\right)=\left(3^2-9\right)\times f\left(3\right)\)

    \(\Leftrightarrow\) \(3\times f\left(5\right)=0\times f\left(3\right)=0\)

    \(\Leftrightarrow\) \(f\left(5\right)=0\)  

2) Ta đã chứng minh x=5 là nhiệm của f(x)\(\Rightarrow\)Cần chứng minh f(x) có 2 nghiệm nữa

  •     Thay x=0 Vào đẳng thức, thu được

               \(0\times f\left(0+2\right)=\left(0^2-9\right)\times f\left(0\right)\)

     \(\Leftrightarrow\) \(f\left(0\right)=0\)

     \(\Rightarrow\)x=0 là ngiệm của f(x)

  •      Thay x=-3 và đẳng thức, thu được

                \(-3\times f\left(-3+2\right)=\left(\left(-3\right)^2-9\right)\times f\left(-3\right)\)

      \(\Leftrightarrow\)\(-3\times f\left(-1\right)=0\times f\left(-3\right)=0\)

      \(\Leftrightarrow\)\(f\left(-1\right)=0\)

       \(\Rightarrow\)x=-1 là nghiệm của f(x)

      Vậy f(x) có ít nhất 3 nghiệm là x=5; x=0; x=-1     

4 tháng 2 2016

Mình chưa học

123456789

duyệt đi

2 tháng 7 2020

Nếu x = 1 

=> (x - 1).f(x) = (x + 4).f(x + 8) (1)

=> 0.f(1) = 5.f(9)

=> f(9) = 0

=> x = 1 là 1 nghiệm của f(x)

Nếu x = -4

=> (1) <=> 3.f(-4) = 0.f(4)

=> 3.f(-4) = 0

=> f(-4) = 0

=> x = -4 là 1 nghiệm của f(x) 

=> F(x) có ít nhất 2 nghiệm

NV
18 tháng 3 2023

\(\left(x^2-25\right)f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\) (1)

Thay \(x=2\) vào (1) ta được:

\(-21.f\left(3\right)=0.f\left(1\right)=0\Rightarrow f\left(3\right)=0\)

\(\Rightarrow x=3\) là 1 nghiệm của \(f\left(x\right)\)

Thay \(x=5\) vào (1):

\(0.f\left(6\right)=3.f\left(4\right)\Rightarrow f\left(4\right)=0\)

\(\Rightarrow x=4\) là 1 nghiệm

Thay \(x=-5\) vào (1):

\(0.f\left(-4\right)=-7.f\left(-6\right)\Rightarrow f\left(-6\right)=0\)

\(\Rightarrow x=-6\) là 1 nghiệm

Vậy \(f\left(x\right)\) có ít nhất 3 nghiệm là \(x=\left\{3;4;-6\right\}\)

30 tháng 5 2018

+) Với x = 0 ta có :

\(0.f\left(0-2\right)=\left(0-4\right).f\left(0\right)\)

\(\Rightarrow0.f\left(-2\right)=-4.f\left(0\right)\)

\(\Rightarrow0=-4.f\left(0\right)\)

\(\Rightarrow f\left(0\right)=0\)

Như vậy x = 0 là một nghiệm của đa thức f(x)

+) Với x = 4 ta có :

\(4.f\left(4-2\right)=\left(4-4\right).f\left(4\right)\)

\(\Rightarrow4.f\left(2\right)=0.f\left(4\right)\)

\(\Rightarrow4.f\left(2\right)=0\)

\(\Rightarrow f\left(2\right)=0\)

Như vậy x = 4 là một nghiệm của đa thức f(x)

Vậy đa thức f(x) có ít nhất hai nghiệm

_Chúc bạn học tốt_

30 tháng 5 2018

Bài giải 

Cho \(x=0\)thì \(0.f\left(-2\right)=-4.f\left(0\right)=0\)

Cho \(x=2\)thì \(2.f\left(0\right)=-2.f\left(2\right)\)nên \(f\left(2\right)=-f\left(0\right)=0\)

Vậy \(f\left(x\right)\) có ít nhất 2 nghiệm là \(0\) và \(2\).