Câu 13: Cho tam giác ABC vuông tại A , đường phân giác BE . Kẻ EH vuông góc với BC ( H thuộc BC ) . Chứng minh rằng :
a, Tam giác ABE = tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔABE=ΔHBE
b: ΔBAE=ΔBHE
=>BA=BH và EA=EH
=>BE là trung trực của AH
c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEK=góc HEC
=>ΔEAK=ΔEHC
=>EK=EC
=>ΔEKC cân tại E
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác của góc HBA).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
b: ta có: ΔABE=ΔHBE
nên AE=HE; BA=BH
Suy ra: BE là đường trung trực của AH
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co
BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la tia p/g goc B)
--> tam giac ABE= tam giac HBE ( ch=gn)
b) ta co
BA=BH ( tam giac ABE= tam giac HBE)
EA=EH( tam giac ABE= tam giac HBE)
==> BE la duong trung truc cua AH
c) xet tam giac EKA va tam giac ECH ta co
AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )
--> tam giac EKA = tam giac ECH ( g--c-g)
--> EK=EC (2 canh tuong ung )
d) tu diem E den duong thang HC ta co :
EH la duong vuong goc ( EH vuong goc BC)
EC la duong xien
-> EH<EC ( quan he duong xien duong vuong goc)
ma EH= AE ( tam giac ABE= tam giac HBE)
nen AE < EC
Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng
1) Tam giác ABE=tam giác HBE
2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC
3) AE<EC
mình chỉ biết chứng minh phần a thui,mong bạn thông cảm nha
a)xét tam giác ABE và tam giác HBE có
góc BAE= góc BHE(= 90 độ)
cạnh BE chung
góc ABE= góc HBE(giả thiết)
=>tam giác ABE = tam giác HBE(c/h-g/n)(đpcm)
a, xét 2 tam giác vuông ABE và HBE có:
BE cạnh chung
\(\widehat{ABE}\)=\(\widehat{HBE}\)(gt)
=> tam giác ABE =tam giác HBE(CH-GN)
b) gọi O là giao điểm của BE và AH
xét tam giác OAB và tam giác OHB có:
OB chung
\(\widehat{OBA}\)=\(\widehat{OBH}\)(gt)
AB=HB(theo câu a)
=> tam giác OAB=tam giác OHB(c.g.c)
=> OA=OH=> O là trung điểm của AH(1)
\(\widehat{AOB=\widehat{HOB}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB=\widehat{HOB}}\)=90 độ => BO\(\perp\)AH(2)
từ (1) và (2) => BE là trung trực của AH
c)xét 2 tam giác vuông EAK và HEC có:
AE=EH
\(\widehat{AEK=\widehat{HEC}}\)(đối đỉnh)
=> tam giác EAK=tam giác HEC(cạnh góc vuông-góc nhọn)
=> EK=EC
d) trong tam giác vuông AEK có: AE<EK(vì cạnh huyền>cạnh góc vuông) mà EK=EC=> AE<EC
A) XÉT \(\Delta ABE\)VÀ \(\Delta HBE\)CÓ
\(\widehat{BAE}=\widehat{BHE}=90^o\)
BE LÀ CẠNH CHUNG
\(\widehat{B_1}=\widehat{B_2}\left(GT\right)\)
=>\(\Delta ABE\)=\(\Delta HBE\)(CH-GN)
B) GỌI I LÀ GIAO ĐIỂM CỦA BE VÀ AH
VÌ \(\Delta ABE\)=\(\Delta HBE\)(CMT)
=>AB=BH
XÉT \(\Delta BIA\)VÀ\(\Delta BIH\)CÓ
AB=BH(CMT)
\(\widehat{B_1}=\widehat{B_2}\left(GT\right)\)
BI LÀ CẠNH CHUNG
=>\(\Delta BIA\)=\(\Delta BIH\)(C-G-C)
=> AI = IH ( HAI CAH TƯƠNG ƯNG ) (1)
=> \(\widehat{I_1}=\widehat{I_2}\)HAI GÓC TU
VÌ \(\widehat{I_1}\)VÀ\(\widehat{I_2}\)KỀ BÙ
\(\Rightarrow\widehat{I_1}=\widehat{I_2}=\frac{180^o}{2}=90^o\left(2\right)\)
từ 1 và 2 => BE LÀ TRUNG TRỰC CỦA ĐỌAN THẲNG AH
Hình bn tự vẽ nhé
a. Xét hai tam giác vuông ABE và tam giác vuông HBE có
góc BAE = góc BHE = 90độ
cạnh BE chung
góc ABE = góc HBE [ vì BE là pg góc B ]
Do đó ; tam giác ABE = tam giác HBE [ cạnh huyền - góc nhọn ]
b. Theo câu a ; tam giác ABE = tam giác HBE
\(\Rightarrow\)BA = BH nên B thuộc đường trung trực của đt AH
và EA = EH nên E thuộc đường trung trực của đt AH
\(\Rightarrow\)BE là đường trung trực của AH
học tốt
Nhớ ti ck và kết bạn với mình nhé