Rút gọn biểu thức P=5/3x7+5/7x11+5/11x15+...+5/(4n-1)x(4n+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=1/3.7+1/7.11+1/11.15+...+1/43.47
M=1/3-1/7+1/7-1/11+1/11-1/15+...+1/43-1/47
M=1/3-1/47
CÒN LẠI TỰ TÍNH NHA BN
AI THẤY ĐÚNG THÌ ỦNG HỘ NHA
M=\(\frac{1}{3x7}+\frac{1}{7x11}+\frac{1}{11x15}+...+\frac{1}{43x47}\)
=>4M=\(\frac{4}{3x7}+\frac{4}{7x11}+...+\frac{4}{43x47}\)
=>4M=\(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{43}-\frac{1}{47}\)
=>4M=\(\frac{1}{3}-\frac{1}{47}\)
=>4M=\(\frac{44}{141}\)
=>M=\(\frac{44}{141}:4\)
=>M=\(\frac{11}{141}\)
Ta có: \(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{23\cdot27}\)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{23}-\dfrac{1}{27}\)
\(=\dfrac{1}{3}-\dfrac{1}{27}=\dfrac{8}{27}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{100.104}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{100}-\frac{1}{104}\)
\(=\frac{1}{3}-\frac{1}{104}=\frac{104}{312}-\frac{3}{312}=\frac{101}{312}\)
\(A=\frac{4}{3X7}+\frac{4}{7X11}+\frac{4}{11X15}+...+\frac{4}{100X104}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{100}-\frac{1}{104}\)
\(=\frac{1}{3}-\frac{1}{104}\)
\(=\frac{101}{312}\)
Chúc bạn học giỏi nha!!!
K cho mik với nhé nguyen huu thuong 2005
\(A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{100.104}\)
\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{100}-\frac{1}{104}\)
\(A=\frac{1}{3}-\frac{1}{104}=\frac{104}{312}-\frac{3}{312}=\frac{101}{312}\)
Rút gọn bằng kiểu nào?
\(P=\frac{5}{3\cdot7}+\frac{5}{7\cdot11}+\frac{5}{11\cdot15}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(P=\frac{5}{4}\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(P=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n+3}\right)\)
\(P=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)
...
P=\(\frac{5}{3x7}\) +\(\frac{5}{7x11}\)+\(\frac{5}{11x15}\)+...+\(\frac{5}{\left(4n-1\right)x\left(4n+3\right)}\)
\(\frac{4}{5}\)P=\(\frac{4}{3x7}\)+\(\frac{4}{7x11}\)+\(\frac{4}{11x15}\)+...+\(\frac{4}{\left(4n-1\right)x\left(4n+3\right)}\)
\(\frac{4}{5}\)P=\(\frac{1}{3}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{11}\)+...+\(\frac{1}{4n-1}\)-\(\frac{1}{4n+3}\)
\(\frac{4}{5}\)P=\(\frac{1}{3}\)-\(\frac{1}{4n+3}\)
P=\(\frac{5}{12}\)-\(\frac{5}{16n+12}\)