rút gọn
cos(\(\frac{\Pi}{2}\)-x)-sin(\(\Pi\)-x)+tan(\(\Pi\)-x)cot(\(\Pi\)+x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn đề bài hãi quá :(
a/ \(A=3\sin\left(5.2\pi+\pi-x\right).\sin\left(2\pi+\frac{\pi}{2}-x\right)+2\sin\left(4.2\pi+\pi+x\right)\)
\(A=3\sin\left(\pi-x\right).\sin\left(\frac{\pi}{2}-x\right)+2\sin\left(\pi+x\right)\)
\(A=3\sin x.\cos x-2\sin x=\sin x\left(3\cos x-2\right)\)
b/ \(B=\sin\left(5.2.180^0+180^0+x\right)-\cos\left(90^0-x\right)+\tan\left(90^0+180^0-x\right)+\cot\left(2.180^0-x\right)\)
\(B=\sin\left(180^0+x\right)-\sin x+\tan\left(90^0-x\right)+\cot\left(-x\right)\)
\(B=-\sin x-\sin x+\cot x-\cot x=-2\sin x\)
c/ \(C=-2\sin\left(-(2\pi+\frac{\pi}{2}-x)\right)-3\cos\left(2\pi+\pi-x\right)+5\sin\left(2.2\pi-\left(\frac{\pi}{2}+x\right)\right)+\cot\left(\pi+\frac{\pi}{2}-x\right)\)
\(C=2\sin\left(\frac{\pi}{2}-x\right)-3\cos\left(\pi-x\right)-5\sin\left(\frac{\pi}{2}+x\right)+\cot\left(\frac{\pi}{2}-x\right)\)
\(2\cos x+3\cos x-5\cos x+\tan x=\tan x\)
d/ \(D=\tan\left(-\left(\pi-x\right)\right).\cos\left(-\left(\frac{\pi}{2}-x\right)\right).\left(-\cos x\right)\)
\(D=\tan\left(\pi-x\right).\cos\left(\frac{\pi}{2}-x\right).\cos x\)
\(D=-\tan x.\sin x.\cos x=-\sin^2x\)
e/ \(E=\cos\left(28.2\pi+\pi+\frac{\pi}{2}-x\right)+\sin\left(-\left(58.2\pi+\pi+\frac{\pi}{2}-x\right)\right)+\cos\left(-\left(46.2\pi+\pi+\frac{\pi}{2}-x\right)\right)+\sin\left(35.2\pi+\pi+\frac{\pi}{2}-x\right)\)
\(E=-\cos\left(\frac{\pi}{2}-x\right)+\sin\left(\frac{\pi}{2}-x\right)-\cos\left(\frac{\pi}{2}-x\right)-\sin\left(\frac{\pi}{2}-x\right)\)
\(E=-2\sin x\)
Thôi, stop ở đây, làm nữa chắc tẩu hỏa nhập ma quá :(
Mình thấy hầu hết các bài này đều có chung 1 điểm, và chắc đó cũng là điểm mà bạn thắc mắc: Đó chính là tách các hạng tử ra và biến đổi
Tách cũng đơn giản thôi, cứ gặp sin, cos thì tách sao cho về dạng 2pi+..., gặp tan, cot thì pi.
Còn tách mấy cái phân số như vầy:
Ví dụ \(\frac{7\pi}{2}\) , 7 chia 2 được 3, ta lấy \(\frac{7}{2}-3=\frac{1}{2}\) thì suy ra: \(\frac{7\pi}{2}=3\pi+\frac{\pi}{2}\)
Đó, thế là được :D
Ta có:
a) \(\sin \left( {x + 2\pi } \right) = \sin x\) với mọi \(x\; \in \;\mathbb{R}\)
b) \(\cos \left( {x + 2\pi } \right) = \cos x\) với mọi \(x\; \in \;\mathbb{R}\)
c) \(\tan \left( {x + \pi } \right) = \tan x\) với mọi \(x \ne \frac{\pi }{2} + k\pi ,\;k\; \in \;\mathbb{Z}\)
d) \(\cot \left( {x + \pi } \right) = \cot x\) với mọi \(x \ne \frac{\pi }{2} + k\pi ,\;k\; \in \;\mathbb{Z}\)
\(x\) | \(\sin x\) | \(\cos x\) | \(\tan x\) | \(\cot x\) |
\(\frac{\pi }{6}\) | \(\frac{1}{2}\) | \(\frac{{\sqrt 3 }}{2}\) | \(\frac{{\sqrt 3 }}{3}\) | \(\sqrt 3 \) |
0 | 0 | 1 | 0 | - |
\( - \frac{\pi }{2}\) | -1 | 0 | - | 0 |
\(=cos\left(4\pi+\pi+x\right)+sin\left(4\pi+\frac{\pi}{2}-x\right)-tan\left(\pi+\frac{\pi}{2}+x\right).cot\left(\pi+\frac{\pi}{2}-x\right)\)
\(=cos\left(\pi+x\right)+sin\left(\frac{\pi}{2}-x\right)-tan\left(\frac{\pi}{2}+x\right).cot\left(\frac{\pi}{2}-x\right)\)
\(=-cosx+cosx-\left(-cotx\right).tanx\)
\(=1\)
a.
\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)
b.
\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)
c.
\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)
a: \(2\cdot cot\left(\dfrac{pi}{2}-x\right)+tan\left(pi-x\right)\)
\(=2\cdot tanx-tanx\)
=tan x
b: \(sin\left(\dfrac{5}{2}pi-x\right)+cos\left(13pi+x\right)-sin\left(x-5pi\right)\)
\(=sin\left(\dfrac{pi}{2}-x\right)+cos\left(pi+x\right)+sin\left(pi-x\right)\)
\(=cosx-cosx+sinx=sinx\)
\(a,\dfrac{1}{tan\alpha+1}+\dfrac{1}{cot\alpha+1}\\ =\dfrac{cot\alpha+1+tan\alpha+1}{\left(tan\alpha+1\right)\left(cot\alpha+1\right)}\\ =\dfrac{tan\alpha+cot\alpha+2}{tan\alpha\cdot cot\alpha+tan\alpha+cot\alpha+1}\\ =\dfrac{tan\alpha+cot\alpha+2}{tan\alpha+cot\alpha+2}\\ =1\)
\(b,cos\left(\dfrac{\pi}{2}-\alpha\right)-sin\left(\pi+\alpha\right)\\ =sin\alpha+sin\alpha\\ =2sin\alpha\)
\(c,sin\left(\alpha-\dfrac{\pi}{2}\right)+cos\left(-\alpha+6\pi\right)-tan\left(\alpha+\pi\right)cot\left(3\pi-\alpha\right)\\ =-sin\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\alpha\right)-tan\left(\alpha\right)cot\left(\pi-\alpha\right)\\ =-cos\left(\alpha\right)+cos\left(\alpha\right)+tan\left(\alpha\right)\cdot cot\left(\alpha\right)\\ =1\)
\(=sinx-sinx-tanx.cotx\)
\(=-1\)