tìm 3 số tự nhiên sao cho : 1/a+1/a+b+1/a+b+c = 1
giải giúp mình nhé ! mai mình phải nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1. \(7^{2n-4}=1\Leftrightarrow2n-4=0\Leftrightarrow n=2\)
câu .2
a. rõ ràng 2x-2 là số chẵn lớn hơn hoạc bằng -2 đồng thời nó là ước của 24 nên ta có
\(2x-2\in\left\{-2;2;4;6;12;24\right\}\Rightarrow x\in\left\{0,2,3,4,7,13\right\}\)
b. rõ ràng 2x+1 là số chẵn lớn hơn hoạc bằng 1 đồng thời nó là ước của 7 nên ta có
\(2x+1\in\left\{1,7\right\}\Rightarrow x\in\left\{0,3\right\}\)
c. ta có \(a+b=a-3+b-4+7\)
ta có a-3 và b-4 chia hết cho 5 còn 7 chia 5 dư 2
vậy a+b chia 5 dư 2..
2. Ta có:
+) Nếu p = 2 => 2 + 10 = 12 (không là số nguyên tố), 2 + 14 = 16 (không là số nguyên tố) => loại p = 2
+) Nếu p = 3 => 3 + 10 = 13 (là số nguyên tố), 3 + 14 = 17 (là số nguyên tố) => chọn p = 3
+) Nếu p > 3 => p = 3k + 1. p = 3k + 2 (k \(\in\) N*)
=> p = 3k + 1 => p + 10 = 3k + 12 chia hết cho 3 => loại p = 3k + 1
=> p = 3k + 2 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 2.
Vậy p = 3.
Ta có:5n+6 chia hết cho 3n-2 =>3(5n+6) chia hết cho 3n-2 hay15n+18 chia hết cho 3n-2(1)
3n-2=5(3n-2)=15n-10(2)
Từ (1) và (2) =>[(15n+8)-(15n-10)] chia hết cho 3n-2
18 chia hết cho 3n-2
(3n-2) có thể bằng :9,2,3,6,1,18
Nếu 3n-2=9 thì n=(9+2):3 loại vì 11 không chia hết cho 3
Nếu 3n-2=2 thì n=(2+2):3 loại vì 4 không chia hết cho 3
Nếu 3n-2=3 thì n=(3+2):3 loại vì 5 không chia hết cho 3
Nếu 3n-2=6 thì n=(6+2):3 loại vì 8 không chia hết cho 3
Nếu 3n-2=1 thì n=(1+2):3 chọn vì 3 chia hết cho 3
Nếu 3n-2=18 thì n=(18+2):3 loại vì 2 không chia hết cho 3
Vậy n=1
n2+4 chia hết cho n-2
Ta có:n2+4=n.n+4.n=n(4+n)
n-1=n.n-n.1=n(n-1)
n2+4 chia hết cho n-1 hay n(4+n)chia hết cho n(n-1)
=4+n chia hết cho n-1
=> n chỉ có thể là 2
Giả sử a = d.m; b = d.n (d = UCLN(m,n), m , n là các số tự nhiên nhỏ hơn 10, (m,n) = 1)
Khi đó BCNN(a;b) = d.m.n
Vậy nên d.m.n + d = 19
\(\Rightarrow d\left(mn+1\right)=19\)
\(\Rightarrow d\inƯ\left(19\right)=\left\{1;19\right\}\)
Mếu d = 19 thì mn + 1 = 1 hay mn = 0 (Vô lý)
Vậy d = 1. Từ đó \(mn+1=19\Rightarrow mn=18\)
Ta có \(18=9.2=6.3\)
Do m, n là hai số nguyên tố cùng nhau nên ta lấy m = 9, n = 2.
Vậy thì ta có hai số cần tìm là 9 và 2.