Cho tam giác ABC cân tại A có chu vi là 80cm đường phân giác góc A và B cắt nhau tại I AI cắt BC tại D cho AI/AD =3/4. Tính các cạnh ABC
Giúp mk nha mk cần gấp
Cảm ơn ạ 😇
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Lê Vũ Anh Thư - Toán lớp 8 | Học trực tuyến
Xét tam giác ABD Có AI là phân giác
=> \(\frac{BD}{ID}\) = \(\frac{AB}{AI}\)
=> \(\frac{AI}{ID}\) = \(\frac{AB}{BD}\)
ID = AD - AI = AD - 3AD/4 = AD/4
=> \(\frac{AB}{BD}\) = \(\frac{AI}{ID}\) = \(\frac{3AD}{4}\)\(\frac{4}{AD}\)= 3
=> AB = 3BD
=> AB = \(\frac{3BC}{2}\)
Chu vi tam giác cân ABC = 80cm
=> AB + AC + BC = 80
=> 2AB + BC = 80
=> 3BC + BC = 80
=> BC = 20 cm
Tam giác vuông CBE có \(\widehat{E}+\widehat{B_1}=90^o\) (1)
Tam giác vuông ACD có \(\widehat{D_1}+\widehat{B_2}=90^o\) (2)
Mà \(\widehat{B_1}=\widehat{B_2}\) (tính chất phân giác) và \(\widehat{D_1}=\widehat{D_2}\)(đối đỉnh) nên suy ra \(\widehat{E}=\widehat{D_2}\)
=> Tam giác CDE cân ở C
a) Vẽ OK là tia phân giác của góc BOC
Ta có : ∠ BOC = 180o - ( ∠ OBC + ∠OCB )
Mà ∠OBC = 1212. ∠ABC
∠OCB = 1212.∠ACB
=> ∠BOC = 180o-1/2x(∠ABC + ∠ ACB )
Mặt khác , ∠ABC + ∠ACB = 180o - ∠A = 180 o - 60o = 120o
=> ∠BOC = 180o- 1212. 120o = 120o
Ta có : ∠EOB + ∠BOC = 180o ( 2 góc kề bù )
=>∠EOB = 180o - 120o = 60o (1)
∠DOC + ∠BOC = 180o (2 góc kề bù )
=> ∠DOC = 180o - 120o = 60o (2)
Từ (1) và (2) => ∠EOB = ∠DOC (= 60o) ( 3)
Vì OK là tia phân giác của góc BOC nên ∠BOK = ∠COK = 1/2x 120o = 60o (4)
Từ (3) và (4) => ∠BOK = ∠ COK = ∠EOB =∠DOC
Xét ΔEOB và Δ KOB có :
OB : cạnh chung
∠EBO = ∠OBK ( gt)
∠EOB = ∠BOK (cmt)
=> ΔEOB = Δ KOB(g - c - g)
=> OE = OK ( 2 cạnh tương ứng) (5)
Xét ΔDOC và ΔKOC có :
OC : cạnh chung
∠KCO = ∠OCD ( gt)
∠KOC = ∠COD ( cmt)
=> ΔDOC = ΔKOC ( g - c - g)
=> OK = OD( 2 cạnh t/ứng) (6)
Từ (5) và (6) => OD = OE ( = OK)
Xét ΔDOE có OD = OE nên ΔDOE cân tại O
b)Vì ΔEOB = Δ KOB (cm câu a)
=> BE = BK ( 2 cạnh t/ứng)
Vì ΔDOC = ΔKOC ( cm câu a)
=> CD = CK ( 2 cạnh t/ứng )
Ta có : BE = BK (cmt)
CD = CK (cmt)
=> BE + CD = BK + CK = BC ( đpcm)
cai so 1212 do bi loi nen ban phai doi thanh \(\frac{1}{2}\)cho mk nha
dau cham la dau nhan
a) Ta có BAD = BAH + HAD = (900-B)+HAD
BDA=DAC+BCA=(900-B)+DAC
Vì HAD=DAC
=>BAD=BDA
<=> tam giác BAD cân tại B
Xét \(\Delta ABD\)có BI là phân giác \(\Rightarrow\frac{AB}{BD}=\frac{AI}{DI}\)( định lý ) (1)
Ta có: \(\frac{AI}{AD}=\frac{3}{4}\)\(\Rightarrow\frac{DI}{AD}=\frac{1}{4}\)
\(\Rightarrow\frac{AI}{ID}=\frac{3}{4}:\frac{1}{4}=3\)(2)
Từ (1) và (2) \(\Rightarrow\frac{AB}{BD}=3\)\(\Rightarrow AB=3BD\)
Xét \(\Delta ABC\)cân tại A có AD là phân giác
\(\Rightarrow\)D là trung điểm của BC \(\Rightarrow BD=\frac{1}{2}BC\)
\(\Rightarrow AB=3.\frac{1}{2}BC=\frac{3}{2}BC\)
Vì \(\Delta ABC\)cân tại A \(\Rightarrow AB=AC=\frac{3}{2}BC\)
mà \(\Delta ABC\)có chu vi là 80 cm
\(\Rightarrow AB+AC+BC=80\)\(\Leftrightarrow\frac{3}{2}BC+\frac{3}{2}BC+BC=80\)
\(\Leftrightarrow4.BC=80\)\(\Leftrightarrow BC=20\)( cm )
\(\Rightarrow AB=AC=\frac{3}{2}.20=30\)( cm )
Vậy \(AB=AC=30cm\), \(BC=20cm\)
Ta có : \(\frac{AI}{AD}=\frac{3}{4}\Leftrightarrow\frac{AI}{ID}=3\)
ABC là tam giác cân và AD là phân giác nên BC = 2BD
Xét tam giác ABD có BI là phân giác nên :
\(\frac{AI}{ID}=\frac{AB}{BD}=3\Leftrightarrow AB=3BD\)
Lại có : \(AB+AC+BC=80\Leftrightarrow2AB+2BD=80\)( \(AB=AC\))
\(\Leftrightarrow6BD+2BD=80\Leftrightarrow8BD=80\Leftrightarrow BD=10\)
\(\Leftrightarrow BC=2BD=20\)( cm )
\(\Rightarrow AB=AC=\frac{3}{2}.20=30\)( cm )
Vậy .......