Xác định dấu của a,b,c trong trường hợp
a) a2b3c6<0; a+b>0; c3-|a|>0
b) |a2+b3c|+5c3<0; (-3a2b)2ac<0; a+b<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Véc tơ lực tác dụng của điện tích q 1 l ê n q 2 có phương chiều như hình vẽ:
Có độ lớn: F 12 = k . | q 1 . q 2 | A B 2 = 9.10 9 .16.10 − 6 .4.10 − 6 0 , 3 2 = 6 , 4 ( N ) .
b) Các điện tích q 1 v à q 2 gây ra tại C các véc tơ cường độ điện trường E 1 → và E 2 → có phương chiều như hình vẽ:
Có độ lớn: E 1 = k | q 1 | A C 2 = 9.10 9 .16.10 − 6 0 , 4 2 = 9 . 10 5 ( V / m ) ;
E 2 = k | q 2 | B C 2 = 9.10 9 .4.10 − 6 0 , 1 2 = 36 . 10 5 ( V / m ) ;
Cường độ điện trường tổng hợp tại C là:
E → = E 1 → + E 2 → có phương chiều như hình vẽ, có độ lớn:
E = E 1 + E 2 = 9 . 10 5 + 36 . 10 5 - 45 . 10 5 ( V / m ) .
c) Gọi E 1 → và E 2 → là cường độ điện trường do q 1 v à q 2 gây ra tại M thì cường độ điện trường tổng hợp do q 1 v à q 2 gây ra tại M là: E → = E 1 → + E 2 → = 0 → ð E 1 → = - E 2 → ð E 1 → và E 2 → phải cùng phương, ngược chiều và bằng nhau về độ lớn. Để thỏa mãn các điều kiện đó thì M phải nằm trên đường thẳng nối A, B; nằm trong đoạn thẳng AB (như hình vẽ).
Với E 1 ' = E 2 ' ⇒ 9 . 10 9 . | q 1 | A M 2 = 9 . 10 9 . | q 2 | ( A B − A M ) 2
⇒ A M A B − A M = | q 1 | | q 2 | = 2 ⇒ A M = 2. A B 3 = 2.30 3 = 20 ( c m ) .
Vậy M nằm cách A 20 cm và cách B 10 cm.
a) Các điện tích q 1 v à q 2 gây ra tại C các véc tơ cường độ điện trường E 1 → và E 2 → có phương chiều như hình vẽ:
Có độ lớn: E 1 = E 2 = k | q 1 | A C 2 = 9.10 9 .8.10 − 6 0 , 25 2 = 11 , 52 . 10 5 (V/m);
Cường độ điện trường tổng hợp tại C là: E → = E 1 → + E 2 → có phương chiều như hình vẽ, có độ lớn:
E = E 1 . cos α + E 2 cos α = 2 E 1 cos α = 2 E 1 C H A C = 2 . 11 , 52 . 10 5 . 25 2 − 10 2 25 = 21 , 12 . 10 5 ( V / m )
b) Điện tích q 3 đặt tại H gây ra tại C véc tơ cường độ điện trường E ' → sao cho E → + E ' → = 0 → ð E → = - E ' → . Để thoả mãn điều đó thì q 3 < 0 và có độ lớn:
| q 3 | = E . H C 2 k = 11 , 52.10 5 . ( 0 , 25 2 − 0 , 1 2 ) 9.10 9 = 6 , 72 . 10 - 6 .
Vậy q 3 = 6 , 72 . 10 - 6 C.
a) (P) nằm hoàn toàn trên trục hoành thì (P) không cắt trục hoành => Phương trình
\(a{x^2} + bx + c = 0\)vô nghiệm => \(\Delta < 0\)
(P) nằm hoàn toàn trên trục hoành thì bề lõm phải hướng lên trên => a>0
b) Tương tự câu a:
(P) nằm hoàn toàn dưới trục hoành thì (P) không cắt trục hoành => Phương trình \(a{x^2} + bx + c = 0\)vô nghiệm => \(\Delta < 0\)
(P) nằm hoàn toàn dưới trục hoành thì bề lõm phải hướng xuống dưới=> a<0
c) (P) cắt trục hoành tại hai điểm phân biệt => Phương trình \(a{x^2} + bx + c = 0\) có 2 nghiệm phân biệt=> \(\Delta > 0\)
(P) có đỉnh nằm phía dưới trục hoành mà có 2 nghiệm phân biệt thì bề lõm phải hướng lên trên ⇒ a>0
d) (P) tiếp xúc với trục hoành ⇒ Phương trình \(a{x^2} + bx + c = 0\)có duy nhất 1 nghiệm ⇒ \(\Delta = 0\)
(P) nằm phía trên trục hoành nên bề lõm phải hướng lên trên ⇒ a > 0
a) Tập hợp A gồm các ứng viên đạt yêu cầu về chuyên môn là:
\(A = \{ {a_1};{a_2};{a_5};{a_6};{a_7};{a_8};{a_{10}}\} \)
Tập hợp B gồm các ứng viên đạt yêu cầu về ngoại ngữ là:
\(B = \{ {a_1};{a_3};{a_5};{a_6};{a_8};{a_{10}}\} \)
b) Tập hợp C gồm các ứng viên đạt yêu cầu cả về chuyên môn và ngoại ngữ là:
\(C = \{ {a_1};{a_5};{a_6};{a_8};{a_{10}}\} \)
c) Tập hợp D gồm các ứng viên đạt ít nhất một trong hai yêu cầu về chuyên môn và ngoại ngữ là:
\(D = \{ {a_1};{a_2};{a_3};{a_5};{a_6};{a_7};{a_8};{a_{10}}\} \)