Tại hội khỏe phù đổng của thành phố Hà Nội, có 56 đội bóng đá đăng kí tham gia. Lúc đầu ban tổ chức dự kiến chia 56 đội thành các bảng đấu với số đội ở mỗi bảng bằng nhau. Tuy nhiên, đến ngày bốc thăm chia bảng thì có 1 đội không tham dự được, vì vậy ban tổ chức quyết định tăng thêm ở mỗi bảng 1 đội, do đó tổng số bảng đấu giá giảm đi 3 bảng. Hỏi số bảng dự kiến lúc đầu là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
+ Chia đều 16 đội vào 4 bảng có
+ Sắp xếp 3 đội của 3 lớp Toán vào 3 bảng khác nhau trong 4 bảng có A 4 3 cách.
Chọn 3 đội trong 13 đội còn lại để xếp vào bảng có đội lớp 10 Toán có C 13 3 cách.
Chọn 3 đội trong 10 đội còn lại để xếp vào bảng có đội lớp 11 Toán có C 10 3 cách.
Chọn 3 đội trong 7 đội còn lại để xếp vào bảng có đội lớp 12 Toán có C 7 3 cách.
Bốn đội còn lại xếp vào bảng còn lại.
Suy ra số cách chia đều 16 đội vào 4 bảng sao cho 3 đội của 3 lớp Toán nằm ở 3 bảng khác nhau là
+ Xác suất cần tìm là:
Chọn D
Nhận định bài toán:
1) Đây là dạng bài toán phân chia một tập hợp ra thành các nhóm có số lượng bằng nhau.
2) Phương pháp:
Dạng bài toán này được phân chia làm 2 loại đó là:
- Các nhóm có thứ tự A, B, C, D…
- Các nhóm không phân biệt thứ tự.
Nếu không phân biệt rõ ràng 2 bài toán này thì rất dễ dẫn đến nhầm lẫn và sai kết quả.
Ví dụ: Có bao nhiêu cách chia 20 người thành 4 nhóm, mỗi nhóm có 5 người trong các trường hợp sau:
a) Các nhóm được đánh tên theo thứ tự A, B, C, D.
b) Không phân biệt thứ tự nhóm.
Lời giải
a) Số cách chọn 5 người cho nhóm A là C 20 5 . Ứng với mỗi cách chọn trên, ta có số cách chọn 5 người cho nhóm B là C 15 5 , nhóm C là C 10 5 và 5 người còn lại vào nhóm D.
Theo quy tắc nhân, ta được số cách chia nhóm là: (cách).
b) Vì các nhóm không phân biệt thứ tự nên khi ta hoán vị 4 nhóm trên sẽ cho cùng một kết quả. Do đó số cách chia trong trường hợp này là
3) Phân tích bài toán và lời giải.
Chia 8 đội thành hai bảng đấu, do đó hai bảng đấu này sẽ có thứ tự rõ ràng cho nên bài toán của chúng ta thuộc loại chia nhóm có thứ tự.
Gọi hai bảng đấu là bảng A và bảng B.
Chọn 4 đội vào bảng A ta có C 8 4 cách, bốn đội còn lại vào bảng B có 1 cách.
Theo quy tắc nhân, ta có số cách chia 8 đội vào hai bảng đấu là:
Gọi A là biến cố “Hai đội Việt Nam nằm ở hai bảng khác nhau”.
Bảng A: Có 3 đội nước ngoài và 1 đội Việt Nam. Số cách chọn là C 6 3 . C 2 1 .
Bảng B: Chỉ còn 1 cách chọn duy nhất cho 3 đội nước ngoài và 1 đội Việt Nam còn lại vào bảng B.
Do đó số cách chia 8 đội thành 2 bảng mỗi bảng có 1 đội Việt Nam là : n(A) = C 6 3 . C 2 1 .1 = 40 cách
Vậy xác suất của biến cố A là:
Chọn D
Chia 8 đội bóng thành 2 bảng đấu có
Gọi A là biến cố: “Hai đội Việt Nam nằm ở hai bảng đấu khác nhau”
Chọn C
Không gian mẫu Ω :” Chia 12 đội thành 3 bảng mỗi bảng 4 đội”
.
Gọi biến cố A:” 3 đội Việt Nam ở 3 bảng đấu khác nhau”.
+ Có 3! cách xếp 3 đội Việt Nam vào 3 bảng đấu.
+ Có C 9 3 C 6 3 cách xếp 9 đội nước ngoài vào 3 bảng đấu.
. Vậy xác suất cần tìm là .
Số cách chia 8 đội thành 2 bảng là:
Gọi A là biến cố: “Hai đội của Việt Nam được xếp vào 2 bảng khác nhau”.
Số các chia 2 đội của Việt Nam vào 2 đội là:
Chọn D.