K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

+) Câu d sửa đề thành BF . BA + CE . CA = BC2

a, Xét △AFH vuông tại F và △ADB vuông tại D

Có: FAH là góc chung

=> △AFH ᔕ △ADB (g.g)

b, Vì △AFH ᔕ △ADB (cmt) \(\Rightarrow\frac{AF}{AD}=\frac{AH}{AB}\)\(\Rightarrow\frac{AB}{AD}=\frac{AH}{AF}\)

Xét △ABH và △ADF

Có: \(\frac{AB}{AD}=\frac{AH}{AF}\)(cmt)

        BAH là góc chung

=> △ABH ᔕ △ADF (c.g.c)

c, Xét △HFB vuông tại F và △HEC vuông tại E

Có: FHB = EHC (2 góc đối đỉnh)

=> △HFB ᔕ △HEC (g.g)

\(\Rightarrow\frac{HF}{HE}=\frac{HB}{HC}\)

=> HF . HC = HE . HB  

d, Sửa đề thành BF . BA + CE . CA = BC2

Xét △HEC vuông tại E và △AFC vuông tại F

Có: HCE là góc chung

=> △HEC ᔕ △AFC (g.g)

\(\Rightarrow\frac{EC}{FC}=\frac{HC}{AC}\)

=> FC . HC = EC . AC  (1)

Xét △HFB vuông tại F và △AEB vuông tại E

Có: FBH là góc chung

=> △HFB ᔕ △AEB (g.g)

\(\Rightarrow\frac{FB}{EB}=\frac{HB}{AB}\)

=> FB . AB = EB . HB  (2)

Xét △BFC vuông tại F và △HDC vuông tại D

Có: HCD là góc chung

=> △BFC ᔕ △HDC (g.g)

\(\Rightarrow\frac{FC}{DC}=\frac{BC}{HC}\)

=> FC . HC = BC . DC (3)

Xét △BEC vuông tại E và △BDH vuông tại D

Có: HBD là góc chung

=> △BEC ᔕ △BDH (g.g)

\(\Rightarrow\frac{BC}{BH}=\frac{BE}{DB}\)

=> BC . DB = BE . BH (4)

Từ (1) và (3) => EC . AC = BC . DC

Từ (2) và (4) => FB . AB = BC . DB 

Ta có: BF . BA + CE . CA = BC . BD + BC . DC = BC . (BD + DC) = BC . BC = BC2

a: Xét ΔADB và ΔAEC có

góc ADB=góc AEC

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD/AB=AE/AC

Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc A chung

=>ΔADE đồng dạng với ΔABC

b: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có

góc EHB=góc DHC

=>ΔHEB đồng dạng với ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

b: Xét ΔBKH vuông tại K và ΔBDC vuông tại D có

góc KBH chung

=>ΔBKH đồng dạng với ΔBDC
=>BK/BD=BH/BC

=>BK*BC=BD*BH

16 tháng 3 2023

Bạn cho mình cả hình đc ko

 

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD/AB=AE/AC

=>ΔADE đồng dạng vơi ΔABC

b: Xet ΔHEB vuông tại E và ΔHDC vuông tại D co

góc EHB=góc DHC

=>ΔHEB đồng dạng vơi ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

Xét tứ giác BHCK co

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>H,M,K thẳng hàng

ΔAED đồg dạng với ΔACB

=>góc AED=góc ACB

d: Xét ΔBEC vuông tại E và ΔBOA vuông tại O có

góc EBC chung

=>ΔBEC đồng dạng với ΔBOA

=>BE/BO=BC/BA

=>BE*BA=BO*BC

Xét ΔCDB vuông tại D và ΔCOA vuông tại O có

góc OCA chung

=>ΔCDB đồng dạng với ΔCOA

=>CD/CO=CB/CA

=>CO*CB=CD*CA

=>BE*BA+CD*CA=BC^2

4 tháng 5 2022

làm hộ với