Bài 1: Cho tam giác ABC, các đường cao BD và CE cắt nhau tại H.
a) Chứng minh rằng : Tg ADB đồng dạng với Tg AEC.
b)Chứng minh rằng :Tg AED đồng dạng Tg ACB.
C)Chứng minh rằng : HE.HC=HD.HB
d)Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K. Gọi M là trung điểm của BC . Chứng minh rằng : H,M,K thẳng hàng.
Bài 2: Cho tam giác PQK cân tại P, trên QK lấy M . Vẽ ME,MF lần lượt vuông góc với PK , PQ. Kẻ đường cao KH. Chứng minh :
a)Tam giác QFM đồng dạng với tam giác QHK.
b)Tam giác QFM đồng dạng với tam giác KEM.
c)EM.QK=KM.KH
d)ME+MF ko thay đổi khi M di động trên QK