Một người đi xe máy từ A đến B với vận tốc 40km/h. Sau khi đến B và nghỉ lại ở đó 30 phút,người đó lại đi từ B về A với vận tốc30km/h. Tổng thời gian cả đi lẫn về là 9h15 phút (kể cả thời gian nghỉ lại ở B). Tính độ dài quãng đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9h15p=9,25h
30p=0,5h
Gọi quãng đường AB là x (km) đk: x>0
Thời gian xe đi từ A đến B: \(\dfrac{x}{40}\)(h)
Thời gian xe đi từ B về A: \(\dfrac{x}{30}\)(h)
Theo bài, ta có pt:
\(\dfrac{x}{40}+\dfrac{x}{30}+0,5=9,25\)
\(\Leftrightarrow\dfrac{x}{40}+\dfrac{x}{30}=8,75\)
\(\Leftrightarrow70x=10500\)
\(\Leftrightarrow x=150\) (thỏa mãn đk)
Vậy quãng đường AB dài 150 km
Đổi 30' = \(\dfrac{1}{2}\) h; 9h15' = \(\dfrac{37}{4}\)
Gọi quãng đường AB là x km (x > 0)
Ta có: Thời gian người đó đi từ A đến B là \(\dfrac{x}{40}\)h
Thời gian người đó đi từ B về A là \(\dfrac{x}{30}\)h
Theo đề bài ta có phương trình:
\(\dfrac{x}{40}+\dfrac{x}{30}+\dfrac{1}{2}=\dfrac{37}{4}\)
⇔ \(\dfrac{3x}{120}+\dfrac{4x}{120}+\dfrac{60}{120}=\dfrac{1110}{120}\)
⇔ 3x + 4x + 60 = 1110
⇔ 7x = 1110 - 60
⇔ 7x = 1050
⇔ x = 150 (thỏa mãn)
Vậy quãng đường AB dài 150 km
Gọi độ dài quãng đường AB là x
Thời gian đi là x/40(h)
Thời gian về là x/30(h)
Theo đề, ta có: x/40+x/30=8,75
hay x=150
gọi quãng đường AB là x(x>0)km
thời gian đi từ A đến B là x/40 h
thời gian từ B về A là x/30 h
vì tổng thời gian cả đi và về là 9h15p=9.25h(tính cả thời gian nghỉ là 30p=0.5h)
nên ta có pt \(\dfrac{x}{40}+\dfrac{x}{30}+0.5=9.25\)
giải pt x=150
vậy quãng đường AB dài 150 km
15 phút = \(\dfrac{1}{4}\) giờ.
2 giờ 30 phút = \(\dfrac{5}{2}\) giờ.
Gọi quãng đường AB là x (km); x > 0.
\(\Rightarrow\) Thời gian xe đi từ A đến B là: \(\dfrac{x}{50}\) (h).
Thời gian xe đi từ B đến A là: \(\dfrac{x}{40}\) (h).
Vì khi đến B người đó nghỉ 15 phút rồi quay về A và thời gian tổng cộng cả đi lẫn về hết 2 giờ 30 phút nên ta có phương trình:
\(\dfrac{x}{50}+\dfrac{x}{40}+\dfrac{1}{4}=\dfrac{5}{2}.\\ \Leftrightarrow\dfrac{x}{50}+\dfrac{x}{40}-\dfrac{9}{4}=0.\\ \Rightarrow4x+5x-450=0.\\ \Leftrightarrow9x=450.\\ \Leftrightarrow x=50\left(TM\right).\)
15 phút = 0,25 giờ ; 2 giờ 30 phút = 2,5 giờ
Gọi x ( km ) là độ dài của quãng đường AB ( x > 0 )
Thời gian xe máy đó đi từ A đến B là: \(\dfrac{x}{50}\) ( giờ )
Thời gian xe máy đó đi từ B đến A là: \(\dfrac{x}{40}\) ( giờ )
Theo đề, tổng thời gian cả đi lẫn về của xe máy đó là 2,5 giờ nên ta có phương trình:
\(\dfrac{x}{50}+0,25+\dfrac{x}{40}=2,5\)
\(\Leftrightarrow\dfrac{4x}{200}+\dfrac{50}{200}+\dfrac{5x}{200}=\dfrac{500}{200}\)
\(\Leftrightarrow4x+50+6x=500\)
\(\Leftrightarrow4x+5x=500-50\)
\(\Leftrightarrow9x=450\)
\(\Leftrightarrow50\) ( nhận )
Vậy quãng đường AB dài 50 km
gọi x là quãng đường AB (x>0)
vận tốc lúc đi là 40km/h nên thời gian đi là x/40
vận tốc lúc về là 30km/h nên thời gian về là x/30
dọc đường người đó nghi lai la 30 phut= 1/2 h
ta lập được phương trình sau:
x/40+x/30+1/2=37/4 (37/4=9h15')
<=>(3x+4x)/120=35/4 <=> 7x/120=35/4 <=>28x=4200 <=>x=150(km/h)
Gọi quãng đường AB là x
thời gian đi từ A → B là : \(\frac{x}{40}\)
thời gian đi từ B → A là \(\frac{x}{30}\)
Vì thời gian đi lẫn về là 9h15' - 30' = 8h45' = 8,75h ; ta có pt :
\(\frac{x}{40}+\frac{x}{30}\) = 8,75 ⇌ 3x + 4x = 1050 ⇌ 7x = 1050 ⇌ x = 150
Vậy quãng đường AB dài 150km