K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 6 2020

\(\frac{1+sin^2a}{1-sin^2a}=\frac{1+sin^2a}{cos^2a}=\frac{1}{cos^2a}+\frac{sin^2a}{cos^2a}=1+tan^2a+tan^2a=1+2tan^2a\)

\(\frac{cosa}{1+sina}+tana=\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina+sin^2a}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)

\(\frac{sina}{1+cosa}+\frac{1+cosa}{sina}=\frac{sin^2a+cos^2a+2cosa+1}{\left(1+cosa\right)sina}=\frac{2+2cosa}{\left(1+cosa\right)sina}=\frac{2\left(1+cosa\right)}{\left(1+cosa\right)sina}=\frac{2}{sina}\)

13 tháng 9 2020

a) \(\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos a}\)

\(\Leftrightarrow\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=\sin^2\alpha\)

\(\Leftrightarrow1-\cos^2\alpha=\sin^2\alpha\)

\(\Leftrightarrow\sin^2\alpha+\cos^2\alpha=1\)( luôn đúng )

\(\Rightarrow\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}\)

NV
13 tháng 4 2020

\(\frac{1}{cos^2a}=1+tan^2a\Rightarrow cos^2a=\frac{1}{1+tan^2a}=\frac{1}{10}\)

a/ \(\frac{sina-cosa}{sina+cosa}=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}=\frac{3-1}{3+1}\)

b/ \(\frac{2sina+3cosa}{3sina-5cosa}=\frac{3tana+3}{3tana-5}=\frac{3.3+3}{3.3-5}\)

c/ \(\frac{1+2cos^2a}{1-cos^2a-cos^2a}=\frac{1+2cos^2a}{1-2cos^2a}=\frac{1+2.\frac{1}{10}}{1-2.\frac{1}{10}}\)

d/ \(\frac{\left(1-cos^2a\right)^2+\left(cos^2a\right)^2}{1+1-cos^2a}=\frac{\left(1-\frac{1}{10}\right)^2+\left(\frac{1}{10}\right)^2}{2-\frac{1}{10}}\)

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

a)    Ta có:

\(\begin{array}{l}{\sin ^4}\alpha  - {\cos ^4}\alpha  = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow \left( {{{\sin }^2}\alpha  + {{\cos }^2}\alpha } \right)\left( {{{\sin }^2}\alpha  - {{\cos }^2}\alpha } \right) = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow {\sin ^2}\alpha  - {\cos ^2}\alpha  - 1 + 2{\cos ^2}\alpha  = 0\\ \Leftrightarrow {\sin ^2}\alpha  + {\cos ^2}\alpha  - 1 = 0\\ \Leftrightarrow 1 - 1 = 0\\ \Leftrightarrow 0 = 0\end{array}\)

Đẳng thức luôn đúng

b)    Ta có:

\(\begin{array}{l}\tan \alpha  + \cot \alpha  = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{\sin \alpha }}{{\cos \alpha }} + \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{\cos \alpha .\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{1}{{\sin \alpha .\cos \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\end{array}\)

Đẳng thức luôn đúng

NV
29 tháng 8 2020

\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)

\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)

\(cot^2a-cos^2a=\frac{cos^2a}{sin^2a}-cos^2a=cos^2a\left(\frac{1}{sin^2a}-1\right)=cos^2a\left(\frac{1-sin^2a}{sin^2a}\right)\)

\(=cos^2a\left(\frac{cos^2a}{sin^2a}\right)=cos^2a.cot^2a\)

\(\frac{1+cosa}{sina}=\frac{sina\left(1+cosa\right)}{sin^2a}=\frac{sina\left(1+cosa\right)}{1-cos^2a}=\frac{sina\left(1+cosa\right)}{\left(1-cosa\right)\left(1+cosa\right)}=\frac{sina}{1-cosa}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)

Ta có:

\({\cos ^4}\alpha {\sin ^4}\alpha  = \left( {{{\cos }^2}\alpha  - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha  + {{\sin }^2}\alpha } \right) \\= {\cos ^2}\alpha  - {\sin ^2}\alpha = {\cos ^2}\alpha  - (1 - {\cos ^2}\alpha ) \\= {\cos ^2}\alpha  - 1 + {\cos ^2}\alpha  = 2{\cos ^2}\alpha  - 1\)

(đpcm)

b)

Ta có:

\(\frac{{{{\cos }^2}\alpha  + {{\tan }^2}\alpha  - 1}}{{{{\sin }^2}\alpha }} = \frac{{{{\cos }^2}\alpha \; + {{\tan }^2}\alpha  - {{\sin }^2}\alpha  - {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{{{{\tan }^2}\alpha  - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{1}{{{{\cos }^2}\alpha }} - 1 = {\tan ^2}\alpha \)

(đpcm)

NV
8 tháng 6 2020

\(a=\left(\frac{sina+\frac{sina}{cosa}}{cosa+1}\right)^2+1=\left(\frac{sina\left(cosa+1\right)}{cosa\left(cosa+1\right)}\right)^2+1\)

\(=tan^2a+1=\frac{1}{cos^2a}\)

\(b=\frac{sina}{cosa}\left(\frac{1+cos^2a-sin^2a}{sina}\right)=\frac{sina}{cosa}\left(\frac{2cos^2a}{sina}\right)=2cosa\)

\(c=1-\frac{cos^2a}{cot^2a}+\frac{sina.cosa}{\frac{cosa}{sina}}=1-cos^2a.\frac{sin^2a}{cos^2a}+\frac{sin^2a.cosa}{cosa}\)

\(=1-sin^2a+sin^2a=1\)

24 tháng 9 2023

Tham khảo:

a) 

Gọi M(x;y) là điểm trên đường tròn đơn vị sao cho \(\widehat {xOM} = \alpha \). Gọi N, P tương ứng là hình chiếu vuông góc của M lên các trục Ox, Oy.

Ta có: \(\left\{ \begin{array}{l}x = \cos \alpha \\y = \sin \alpha \end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\cos ^2}\alpha  = {x^2}\\{\sin ^2}\alpha  = {y^2}\end{array} \right.\)(1)

Mà \(\left\{ \begin{array}{l}\left| x \right| = ON\\\left| y \right| = OP = MN\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x^2} = {\left| x \right|^2} = O{N^2}\\{y^2} = {\left| y \right|^2} = M{N^2}\end{array} \right.\)(2)

Từ (1) và (2) suy ra \({\sin ^2}\alpha  + {\cos ^2}\alpha  = O{N^2} + M{N^2} = O{M^2}\) (do \(\Delta OMN\) vuông tại N)

\( \Rightarrow {\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) (vì OM =1). (đpcm)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

b) 

Ta có:  \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}\;\;(\alpha  \ne {90^o})\)

\( \Rightarrow 1 + {\tan ^2}\alpha  = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }}\)

Mà theo ý a) ta có \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) với mọi góc \(\alpha \)

\( \Rightarrow 1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\) (đpcm)

c) 

Ta có:  \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }}\;\;\;({0^o} < \alpha  < {180^o})\)

\( \Rightarrow 1 + {\cot ^2}\alpha  = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }}\)

Mà theo ý a) ta có \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) với mọi góc \(\alpha \)

\( \Rightarrow 1 + {\cot ^2}\alpha  = \frac{1}{{{{\sin }^2}\alpha }}\) (đpcm)