cho (C) : x2 +y2 +4x+4y +6=0 và đường thẳng d: x + my-2m+3=0 với m là tham số thực . gọi I là tâm đường tròn C . tìm m để Δ cắt (C) tại 2 điểm phân biệt A,B sao cho diện tích Δ IAB là lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=3\)
a. Đường thẳng cắt đường tròn tại 2 điểm pb khi:
\(d\left(I;d\right)< R\Leftrightarrow\dfrac{\left|\sqrt{2}-2m+1-\sqrt{2}\right|}{\sqrt{2+m^2}}< 3\)
\(\Leftrightarrow\left(2m-1\right)^2< 9\left(m^2+2\right)\)
\(\Leftrightarrow8m^2+4m+17>0\) (luôn đúng)
Vậy đường thẳng luôn cắt đường tròn tại 2 điểm pb với mọi m
b. \(S_{IAB}=\dfrac{1}{2}IA.IB.sin\widehat{AIB}=\dfrac{1}{2}R^2.sin\widehat{AIB}\le\dfrac{1}{2}R^2\) do \(sin\widehat{AIB}\le1\)
Dấu "=" xảy ra khi \(sin\widehat{AIB}=1\Rightarrow\Delta IAB\) vuông cân tại I
\(\Rightarrow d\left(I;d\right)=\dfrac{R}{\sqrt{2}}\Leftrightarrow\dfrac{\left|2m-1\right|}{\sqrt{m^2+2}}=\dfrac{3}{\sqrt{2}}\)
\(\Leftrightarrow m^2+8m+16=0\Rightarrow m=-4\)
gọi H là trung điểm AB
=> \(IH=d_{\left(I,\Delta\right)}=\dfrac{\left|3\cdot2+4\cdot\left(-1\right)+3\right|}{\sqrt{3^2+4^2}}=1\)
\(S_{\Delta IAB}=2\cdot\left(\dfrac{1}{2}\cdot IH\cdot HA\right)=4\)
\(IH\cdot IA=4\Leftrightarrow1\cdot HA=4\Rightarrow HA=4\)
\(\Rightarrow R=IA=\sqrt{IH^2+HA^2}=\sqrt{1^2+4^2}=\sqrt{17}\)
\(\Rightarrow\) Phương trình đường tròn (x-2)2 +(y+1)2=17
Chọn C
.
Vì nên phương trình có 2 nghiệm phân biệt.
Do đó hàm số có hai điểm cực trị .
Giả sử hàm số có hai điểm cực trị lần lượt là và , với , là nghiệm của phương trình .
Thực hiện phép chia cho ta được : .
Khi đó ta có: .
Ta thấy, toạ độ hai điểm và thoả mãn phương trình .
Do đó, phương trình đường thẳng qua hai điểm cực trị là .
Ta thấy luôn qua .
Đặt .
.
Xét hàm số , .
, .
Suy ra hàm số liên tục và đồng biến trên .
Do đó .
Vậy đạt giá trị lớn nhất .
Đường tròn (C) tâm \(I\left(-2;-2\right)\) bán kính \(R=\sqrt{2}\)
\(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}\le\frac{1}{2}IA.IB=\frac{1}{2}R^2\)
Dấu "=" xảy ra khi \(sin\widehat{AIB}=1\) hay tam giác \(AIB\) vuông cân tại I
Gọi H là trung điểm AB \(\Rightarrow d\left(I;AB\right)=IH=\frac{R}{\sqrt{2}}=1\)
Áp dụng công thức khoảng cách:
\(\frac{\left|-2-2m-2m+3\right|}{\sqrt{1^2+m^2}}=1\)
\(\Leftrightarrow\left|4m-1\right|=\sqrt{m^2+1}\)
\(\Leftrightarrow16m^2-8m+1=m^2+1\)
\(\Leftrightarrow15m^2-8m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=\frac{8}{15}\end{matrix}\right.\)
Tại sao chỗ áp dụng công thức khoảng cách lại dùng d(I;d). Trong khi IH = d (I;Δ) vậy ạ