Cho \(x,y,z\ge0\). CMR: \(\frac{x}{1+x^2}+\frac{y}{1+x^2+y^2}+\frac{z}{1+x^2+y^2+z^2}\le\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CÔSI ta có VT<=1/xy+1/zy+1/zx.
sau đó vẫn áp dụng bất đẳng thức cosi tùng đôi một vế phải đã cho ta sẽ đc điều phải chứng minh
\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)
\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)
\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)
\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)
Ta có :
\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\) ( Sử dụng phương pháp véctơ )
Do đó :
\(VT^2=\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)\(=81\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)\(-80\left(x+y+z\right)^2\ge18\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-80\left(x+y+z\right)^2\)\(\ge162-80=82\)
\(\Rightarrow VT\ge\sqrt{82}\)
Đẳng thức xảy ra khi x = y = z = \(\frac{1}{3}\)
Cách khác
Áp dụng bđt bunhiacopski có:
\(\left(1.x+9.\frac{1}{x}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{x^2}\right)\)
=> \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{\left(x+\frac{9}{x}\right)}{\sqrt{82}}\)
CM tương tự: \(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{\left(y+\frac{9}{y}\right)}{\sqrt{82}}\)
\(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{\left(z+\frac{9}{z}\right)}{\sqrt{82}}\)
Cộng vế với vế =>A= \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\frac{\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)}{\sqrt{82}}\)
Áp dụng svac-xơ vào VP có A \(\ge\frac{\left(x+y+z+\frac{81}{x+y+z}\right)}{\sqrt{82}}=\frac{\left(x+y+z+\frac{1}{x+y+z}+\frac{80}{x+y+z}\right)}{\sqrt{82}}\ge\frac{\left(2+80\right)}{\sqrt{82}}\)
<=> \(A\ge\sqrt{82}\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{3}\)
Sử dụng BĐT AM-GM, ta có:
\(x^3+y^2\ge2yx\sqrt{x}\)
\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2yx\sqrt{x}}=\frac{1}{xy}\)
Tương tự cộng lại suy ra:
\(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Theo AM-GM: \(x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\)
\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2xy\sqrt{x}}=\frac{1}{xy}\)
Tương tự: \(\frac{2\sqrt{y}}{y^3+z^2}\le\frac{1}{yz}\)
\(\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{zx}\)
Cộng vế với vế => \(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
Theo AM-GM; \(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{x^2}}{2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Dấu " = " xảy ra <=> x=y=z=1
Áp dụng bất đẳng thức Cacuhy - Schwarz
\(\Rightarrow\hept{\begin{cases}x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\\y^3+z^2\ge2\sqrt{y^3z^2}=2yz\sqrt{y}\\z^3+x^2\ge2\sqrt{z^3x^2}=2xz\sqrt{z}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2xy\sqrt{x}}=\frac{1}{xy}\\\frac{2\sqrt{y}}{y^3+z^2}\le\frac{2\sqrt{y}}{2yz\sqrt{y}}=\frac{1}{yz}\\\frac{2\sqrt{z}}{z^3+x^2}\le\frac{2\sqrt{z}}{2xz\sqrt{z}}=\frac{1}{xz}\end{cases}}\)
\(\Rightarrow VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(1\right)\)
Áp dụng bất đẳng thức Cacuchy Schwarz
\(\Rightarrow\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\\\frac{1}{y^2}+\frac{1}{z^2}\ge2\sqrt{\frac{1}{y^2z^2}}=\frac{2}{yz}\\\frac{1}{z^2}+\frac{1}{x^2}\ge2\sqrt{\frac{1}{z^2x^2}}=\frac{2}{xz}\end{cases}}\)
\(\Rightarrow2\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow VT\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\left(đpcm\right)\)
chứng minh \(\frac{3}{2}\ge\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\)
ta có \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\Leftrightarrow\frac{2x}{1+x^2}\le1\)
\(\left(y-1\right)^2\ge0\Leftrightarrow y^2+1\ge2y\Leftrightarrow\frac{2y}{1+y^2}\le1\)
\(\left(z-1\right)^2\ge0\Leftrightarrow z^2+1\ge2z\Leftrightarrow\frac{2z}{1+z^2}\le1\)
\(\Rightarrow\frac{2x}{1+x^2}+\frac{2y}{1+y^2}+\frac{2x}{1+z^2}\le3\Leftrightarrow\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\)
chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{2}\)
áp dụng bất đẳng thức Cauchy ta có:
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge3\sqrt[3]{\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}=\frac{3}{\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)
ta lại có \(\frac{\left(1+x\right)\left(1+y\right)\left(1+z\right)}{3}\ge\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
vậy \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{\frac{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}{3}}=\frac{3}{2}\)
kết hợp ta có \(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)