Cho a,b và c là các số thực thỏa mãn \(b+d\ne0\)và \(\frac{ac}{b+d}\ge2\).
CMR: Phương trình \(\left(x^2+ax+b\right)\left(x^2+cx+d\right)=0\)(x là ẩn) luôn có nghiệm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hai pt: \(x^2+ax+b=0\) có \(\Delta_1=a^2-4b\)
\(x^2+cx+d=0\) có \(\Delta_2=c^2-4d\)
Ta có:
\(\Delta_1+\Delta_2=a^2+c^2-4\left(b+d\right)\)
TH1: nếu \(b+d< 0\Rightarrow-4\left(b+d\right)>0\)
\(\Rightarrow\Delta_1+\Delta_2=a^2+c^2-4\left(b+d\right)>0\)
\(\Rightarrow\) Tồn tại ít nhất 1 trong 2 giá trị \(\Delta_1;\Delta_2\) dương hay ít nhất 1 trong 2 pt có nghiệm \(\Rightarrow\) pt đã cho có nghiệm
TH1: \(b+d>0\Rightarrow ac\ge2\left(b+d\right)\Rightarrow-4\left(b+d\right)\ge-2ac\)
\(\Rightarrow\Delta_1+\Delta_2\ge a^2+c^2-2ac=\left(a-c\right)^2\ge0\)
\(\Rightarrow\) tồn tại ít nhất 1 trong 2 giá trị \(\Delta_1;\Delta_2\) không âm hay ít nhất 1 trong 2 pt có nghiệm
Vậy pt đã cho luôn có nghiệm
Đặt \(f\left(x\right)=ax^{3\:}+bx^2+cx+d\left(a\ne0\right)\)
Nếu \(a< 0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=+\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=-\infty\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)\in\left(-\infty;+\infty\right)\), với \(x\in\left(-\infty;+\infty\right)\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm
Nếu \(a>0\) thì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\\\lim\limits_{x\rightarrow+\infty}f\left(x\right)=+\infty\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=0\) luôn có nghiệm
Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)
TH1: \(a;c\) trái dấu
Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)
Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)
Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.
Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)
\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)
Mà a; c trái dấu nên:
- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)
\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)
\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu
\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)
Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)
Gọi nghiệm chung phương trình là x2
Phương trình x2 + ax + b = 0 có nghiệm
\(x_1+x_2=-a;x_1.x_2=b\)
Tương tự với phương trình x2 + cx + d = 0
=> \(x_3+x_2=-c;x_2.x_3=d\)
Khi đó b - d = x2(x1 - x3)
a - c = x3 - x1
ad - bc = -(x1 + x2).x2.x3 + x1.x2(x3 + x2) = \(x_2^2\left(x_1-x_3\right)\)
Khi đó P = (b - d)2 + (a - c)(ad - bc)
= \(\left[x_2\left(x_1-x_3\right)\right]^2-\left(x_1-x_3\right)x_2^2\left(x_1-x_3\right)=0\)(đpcm)