K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2020

chép sai đề bài thì làm sao giải được

24 tháng 5 2020

sai chỗ này nè

kẻ AH...BC tại H

Hình vẽ:

image

Bài giải:

Ta có: H và E đối xứng nhau qua AC(gt)

⇒AC là đường trung trực của HE(tính chất hai điểm đối xứng nhau qua một đường thẳng)

hay A nằm trên đường trực của HE

⇒AH=AE(1)

Ta có: H và D đối xứng nhau qua AB(gt)

⇒AB là đường trung trực của HD(tính chất hai điểm đối xứng nhau qua một đường thẳng)

hay A nằm trên đường trực của HD

⇒AH=AD(2)

Từ (1) và (2) suy ra AD=AE

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(định nghĩa tam giác cân)

19 tháng 8 2017

c) chứng minh tứ giác BDEC là hình thang vuông nhé

8 tháng 8 2019

A B C H D E M N I

a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.

b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng

Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)

Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)

Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)

Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)

Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)

Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)

Từ (6) suy ra  ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)

Từ (***) và (****) suy ra đpcm.

c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I

\(\Rightarrow\)^IAC = ^ICA (7)

Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)

Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)

Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.

P/s: Không chắc nha!

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

b: Xét ΔAED có AH/AE=AM/AD

nên HM//ED

=>ED//CB

Xet ΔCAE có

CH vừa là đường cao, vừa là trung tuyến

=>ΔCAE can tại C

=>CA=CE=BD

Vì BC//ED và BD=CE
nên BCDE là hình thang cân

c: Xét tứ giác AHCK có

N là trung điểm chung của AC và HK

góc AHC=90 độ

=>AHCK là hình chữ nhật

a: Ta có: H và E đối xứng với nhau qua AB

nên AB là đường trung trực của HE

=>AH=AE

=>ΔAEH cân tại A

mà AB là đường trung tuyến

nên AB là tia phân giác của góc HAE(1)

Ta có: H và D đối xứng nhau qua AC

nên AC là đường trung trực của HD

=>AH=AD

=>ΔAHD cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAD(2)

Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)

=>D,A,E thẳng hàng

mà AD=AE

nên A là trung điểm của DE

b: Xét ΔDHE có 
HA là đường trung tuyến

HA=DE/2

Do đó: ΔDHE vuông tại H

7 tháng 12 2016

a) Vì E đối xứng vói H qua AB (gt)=> Tam giác AEH là tam giác cân ( t/c các đường trong tam giác cân)=> EAM=MAH( AM là đường phân giác) (1)

CM tương tự ta có tam giác AHD cân tại A=> AN là dường phân giác=> HAN=DAN (2)

Vì ABC = 1V(gt) => MAH+HAN=90 (3)

Từ (1) (2) (3) => EAM+ NAD= 90(4)

Từ (3) (4)=> EAD= 180=> A,E,D thẳng hàng.(5)

Vì EAH cân tại A(cmt) => EA=AH( đn tam giác cân)

Vì HAD cân tại A ( cmt) => AH=AD(__________)

=> EA=AD ( bắc cầu) (6)

Từ (5) (6) => E đối xứng D qua A

b) CM MHAN là hcn (3 góc vuông)

=> MN=AH( 2 đường chéo)

Gọi O là giao điểm của MN và AH

=> O là trung điểm của MN và AH

Xét AHM vuông tại H (AH là đường cao) có:

HO là trung tuyến => HO = 1/2 AM (định lý)

mà AM= DE (cmt)

=> HO= 1/2 DE

Xét DHE có

O là trung điểm DE ( cmt)

HO là trung truyến

HO= 1/2 DE (cmt)

=> DHE vuông tại H

 

 

 

11 tháng 12 2016

cau d ghi sai de roi. phai la BC = BD = ED