Cho a,b,c là ba cạnh của tam giác. Chứng minh rằng: 2(ab+bc+ca)>a^2+b^2+c^2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CA
1
19 tháng 12 2015
nguyễn hồng quân đấy là phim hành động nhé chứ không phải phim hoạt hình nhé bạn !!!
SK
3
TH
0
HT
1
8 tháng 2 2016
a2b+b2c+c2a+ca2+bc2+ab2-a3-b3-c3
=(a2b+a2c-a3)+(b2c+ab2-b3)+(c2a+c2b-c3)
=a2(b+c-a)+b2(a+c-b)+c2(a+b-c)
áp dụng bất đẳng thức tam giác vào tam giác có các số đo=a;b;c ta có:
a+b>c
=>a+b-c>0
b+c>a
=>b+c-a>0
c+a>b
=>c+a-b>0
=>a2(b+c-a)+b2(a+c-b)+c2(a+b-c)>0
=>a2b+b2c+c2a+ca2+bc2+ab2-a3-b3-c3>0
=>đpcm
8 tháng 2 2016
a2b+b2c+c2a+ca2+bc2+ab2-a3-b3-c3
=(a2b+a2c-a3)+(b2c+ab2-b3)+(c2a+c2b-c3)
=a2(b+c-a)+b2(a+c-b)+c2(a+b-c)
áp dụng bất đẳng thức tam giác vào tam giác có các số đo=a;b;c ta có:
a+b>c
=>a+b-c>0
b+c>a
=>b+c-a>0
c+a>b
=>c+a-b>0
=>a2(b+c-a)+b2(a+c-b)+c2(a+b-c)>0
=>a2b+b2c+c2a+ca2+bc2+ab2-a3-b3-c3>0
=>đpcm