K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2020

a) Theo đề bài ta có :

BC2 = 52 = 25

AB2 + AC2 = 42 + 32 = 16 + 9 = 25

=> BC2 = AB2 + AC2 ( định lý Pytago đảo )

=> Tam giác ABC vuông ( đpcm )

b) \(C_{\Delta ABC}=AB+AC+BC=3+4+5=12cm\)

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔACB có AD là phân giác

nên BD/AB=CD/AC
=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó:BD=30/7cm; CD=40/7cm

a) Ta có: \(BC^2=5^2=25\)

\(AB^2+AC^2=3^2+4^2=25\)

Do đó: \(BC^2=AB^2+AC^2\)(=25)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Bài 1: 

a: Xét ΔABC có \(AC^2=AB^2+BC^2\)

nên ΔABC vuông tại B

b: XétΔABC có BC<AB<AC

nên \(\widehat{A}< \widehat{C}< \widehat{B}\)