K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
25 tháng 7 2021

a) \(\left(x+y\right)^2\ge0\Leftrightarrow x^2+y^2\ge-2xy\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2-2xy\)

\(\Leftrightarrow\frac{x^2+y^2}{2}\ge\frac{\left(x-y\right)^2}{4}\)

Dấu \(=\)khi \(x+y=0\Leftrightarrow x=-y\).

b) \(\frac{x^2+y^2+z^2}{4}\ge2\left(xy+yz+zx\right)\)

Câu này có lẽ bạn sai đề rồi nhé. 

NV
2 tháng 3 2020

1.

\(x^2+y^2+z^2\ge2xy+2yz-2zx\)

\(\Leftrightarrow x^2+y^2+z^2-2xy-2yz+2zx\ge0\)

\(\Leftrightarrow\left(x-y+z\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x+z=y\)

2.

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

\(\Leftrightarrow x^2-2x+1+y^2-2y+1+z^2-2z+1\ge0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y=z=1\)

7 tháng 4 2017

Câu hỏi của thanh ngọc - Toán lớp 9 | Học trực tuyến

9 tháng 7 2023

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

9 tháng 7 2023

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

27 tháng 6 2023

Xét A= \(\dfrac{x}{\sqrt{x+2yz}}\).\(\dfrac{1}{\sqrt{2}}\)=\(\dfrac{x}{\sqrt{2x+4yz}}\)=\(\sqrt{\dfrac{x.x}{2x+4yz}}\)

ta có x+y+z=\(\dfrac{1}{2}\)=> 2x+2y+2z= 1=> 2x+4yz= 4yz+1-2y-2z=(2y-1)(2z-1)
từ đó A= \(\sqrt{\dfrac{x}{2y-1}.\dfrac{x}{2z-1}}\)=\(\sqrt{\dfrac{x}{2y-2x-2y-2z}.\dfrac{x}{2z-2x-2y-2z}}\)
=\(\sqrt{\dfrac{x}{-2\left(x+y\right)}\dfrac{x}{-2\left(x+z\right)}}\)=\(\sqrt{\dfrac{1}{4}.\dfrac{x}{x+z}.\dfrac{x}{x+y}}\)=\(\dfrac{1}{2}\sqrt{\dfrac{x}{x+y}.\dfrac{x}{x+z}}\)
Áp dụng cô si  \(\sqrt{ab}\)\(\dfrac{a+b}{2}\) =>\(\dfrac{1}{2}\sqrt{ab}\)\(\dfrac{a+b}{4}\)ta được
A≤\(\dfrac{1}{4}\).(\(\dfrac{x}{x+y}\)+\(\dfrac{x}{x+z}\))
cmmt thì \(\dfrac{P}{\sqrt{2}}\)≤ \(\dfrac{1}{4}\).\(\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{y+x}+\dfrac{y}{y+z}+\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)\)
               \(\dfrac{P}{\sqrt{2}}\)\(\dfrac{3}{4}\)=>P≤\(\dfrac{3.\sqrt{2}}{4}\)=\(\dfrac{3}{2\sqrt{2}}\)
Dấu"=" xảy ra <=> x=y=z=\(\dfrac{1}{6}\)

AH
Akai Haruma
Giáo viên
30 tháng 5 2019

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\right)[(x^2+2yz)+(y^2+2xz)+(z^2+2xy)]\geq (1+1+1)^2\)

\(\Leftrightarrow \frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\geq \frac{9}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{(x+y+z)^2}=\frac{9}{3^2}=1\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$