Cho A = 511 + 512 + 513 + ... + 5200.Hãy chứng tỏ A chia hết cho 30.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A =n^12-n^8-n^4+1
=(n^8-1)(n^4-1)=(n^4+1)(n^4-1)^2
=(n^4+1)[(n^2+1)(n^2-1)]^2
=(n-1)^2*(n+1)^2*(n^2+1)^2*(n^4+1)
Ta có n-1 và n+1 là 2 số chẵn liên tiếp nên có 1 số chỉ chia hết cho 2 ,1 số chia hết cho 4 nên (n-1)(n+1) chia hết cho 8 => (n-1)^2*(n+1)^2 chia hết cho 64
Mặt khác n lẻ nên n^2+1,n^4+1 cũng là số chẵn nên (n^2+1)^2*(n^4+1) chia hết cho 2^3=8
Do đó : A chia hết cho 64*8=512
a, Ta có m là số nguyên chẵn
=> m có dạng 2k
=> m3+20m=(2k)3+20.2k
=8k3+40k=8k(k2+5)
Cần chứng minh k(k2+5) chia hết cho 6
Nếu k chẵn => k(k2+5) chia hết cho 2
Nếu k lẻ =>k2 lẻ=> k2+5 chẵn=> k(k2+5) chia hết cho 2
Nếu k chia hết cho 3 thì k(k2+5) chia hết cho 3
Nếu k chia 3 dư 1 hoặc dư 2 thì
k có dạng 3k+1 hoặc 3k+2
=> (3k+1)[(3k+1)2+5)]
=(3k+1)(9k2+6k+6) Vì 9k2+6k+6 chia hết cho 3
=> k(k2+5) chia hết cho 3
Nếu k chia 3 dư 2
=> k có dạng 3k +2
=> k(k2+5)=(3k+2)[(3k+2)2+5]
=(3k+2)(9k2+12k+9)
Vì 9k2+12k +9 chia hết cho 3
=> k(k^2+5) chia hết cho 3
=> k(k2+5) chia hết cho 6
=> 8k(k2+5) chia hết cho 48
=> dpcm
n12-n8-n4+513 = (n12-n8)-(n4-1)+512 = n8(n4-1)-(n4-1)+512 = (n4-1)(n8-1)+512 = (n4-1)2(n4+1)+512 = (n4-1)2(n4+1)+512 =
= (n-1)2(n+1)2(n2+1)2(n4+1)+512
Ta có: 512=29
Nhận thấy 512 chia hết cho 512
Xét: n=1 => (n-1)2(n+1)2(n2+1)2(n4+1)=0 => n12-n8-n4+513=512 chia hết cho 512
n>1, n lẻ => (n-1)2; (n+1)2; (n2+1)2 và (n4+1) là các số chẵn và trong đó có ít nhất 2 số chia hết cho 4
=> (n-1)2(n+1)2(n2+1)2(n4+1) là số có dạng: (2k)5(4n)2 = 25.24.k5.n5 = 512.a chia hết cho 512
=> (n-1)2(n+1)2(n2+1)2(n4+1)+512 chia hết cho 512
=> n12-n8-n4+513 Chia hết cho 512 với mọi n lẻ
Vì 30 chia hết cho 3; 18 chia hết cho 3
nên a chia hết cho 3 (đpcm)
Vì 30 chia hết cho 5; mà 18 không chia hết cho 5
nên a không chia hết cho 5 (đpcm)
a,
a= 21 + 22 + 23 + ....+ 230
a= ( 21+22 ) + (23 + 24 ) + ...+ ( 229 + 230 )
a = 21 (1+2) + 23(1+2) + ...+ 229(1+2)
a = 21.3 + 23 .3 + ...+ 229 .3
a = 3 ( 21 + 23 + ..+ 229 ) \(⋮\) 3
Vậy a chia hết cho 3
a = 21 + 22 + 23 + ....+ 230
a = ( 21 + 22 + 23 ) + ....+ ( 228 + 229 + 230 )
a = 21(1+2+22) + .....+ 228(1+2+22 )
a = 21 . 7 + ...+ 228.7
a = 7 (21 + ..+228) \(⋮\) 7
Vậy a chia hết cho 7
Vì a chia hết cho 3 và 7 nên a sẽ chia hết cho 21
b,
a = 88 + 220
a = (23)8 + 220
a = 224 + 220
a = 220 . 24 + 220
a=220(24 + 1)
a= 220 . 17 \(⋮\) 17
=> đpcm