Cho tam giác ABC, phân giác AD. Trên nửa mặt phẳng bờ BD không chứa A, vẽ góc CBx = góc ABD, Bx cắt AD tại E. Chứng minh:
a) Tam giác ADC đồng dạng với tam giác DEB
b) góc ABE = góc ADC
c) EA.BD2=ED.AB2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔADC có
góc BAE=góc DAC
góc AEB=góc ACD
=>ΔABE đồng dạng với ΔADC
b: ΔABE đồng dạng với ΔADC
=>AE/AC=AB/AD
=>AE*AD=AB*AC=BE^2
a) Xét tam giác MBD và tam giác MAB:
\(\widehat{DMB}chung.\)
\(\widehat{DBM}=\widehat{BAM}\left(\widehat{CBx}=\widehat{BAD}\right).\)
=> Tam giác MBD \(\sim\) Tam giác MAB (g - g).
a) Vì AD là tia phân giác ∠BAC => ∠BAD = ∠CAD
Mà ∠BAD = ∠CBE
Nên ∠CAD = ∠CBE
Xét ΔADC và ΔDEB có:
∠CAD = ∠CBE ( chứng minh trên )
∠ADC = ∠BDE ( đối đỉnh)
Do đó ΔADC đồng dạng với ΔDEB ( g.g)
b) Vì ΔADC đồng dạng với ΔDEB ( câu a)
=> ∠ACD = ∠BED ( 2 góc tương ứng )
Xét ΔADC có: ∠DAC + ∠DCA + ∠ADC = 180 độ
Xét ΔABE có: ∠BAE + ∠BEA + ∠ABE = 180 độ
Mà ∠DCA = ∠BEA ( chứng minh trên )
∠BAE = ∠CAD ( chứng minh trên )
=> ∠ADC = ∠ABE
c) Xét ΔABE và ΔBDE có:
∠BAE = ∠DBE ( giả thuyết)
∠E chung
Do đó ΔABE đồng dạng với ΔBDE (g.g)
=> EAEBEAEB = ABBDABBD
<=> EA . BD = EB . AB
<=>(EA . BD)² = (EB.AB)²
k cho mk nha