Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
b: Xét ΔBFC có
BH là đường cao
BH là đường phân giác
Do đó: ΔBFC cân tại B
=>BF=BC
c: Xét ΔBDF và ΔBAC có
BD=BA
\(\widehat{DBF}\) chung
BF=BC
Do đó: ΔBDF=ΔBAC
=>DF=AC
Ta có: AE+EC=AC
DE+EF=DF
mà AE=DE(ΔBAE=ΔBDE)
và AC=DF
nên EC=EF
Ta có: ΔBAE=ΔBDE
=>\(\widehat{BAE}=\widehat{BDE}\)
=>\(\widehat{BDE}=90^0\)
=>DE\(\perp\)BC
Xét ΔEAF vuông tại A và ΔEDC vuông tại E có
EA=ED
EF=EC
Do đó: ΔEAF=ΔEDC
=>\(\widehat{AEF}=\widehat{DEC}\)
mà \(\widehat{DEC}+\widehat{DEA}=180^0\)(hai góc kề bù)
nên \(\widehat{DEA}+\widehat{AEF}=180^0\)
=>D,E,F thẳng hàng
a: Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
b: Xét ΔBFC có
BH vừa là đường cao, vừa là phân giác
=>ΔBFC cân tại B
c: Xét ΔBAC và ΔBDF có
BA=BD
góc ABC chung
BC=BF
=>ΔBAC=ΔBDF
=>góc BDF=góc BAC=90 độ
=>D,E,F thẳng hàng
a, áp dụng định lí py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
=>\(BC^2\)=64+36=100(cm)
=>BC=10cm
vậy BC=10cm
b,xét 2t.giác vuông ABE và DBE có:
EB chung
AB=BD(gt)
=>t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)
c,xét 2 t.giác vuông AEF và t.giác DEC có:
AE=DE(theo câu b)
\(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)
=>t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn)
=>AF=DC mà BA=BD(gt) suy ra BF=BC
d,gọi O là giao điểm của BE và CF
xét t.giác BFO và t.giác BCO có:
BF=BC(theo câu c)
\(\widehat{FBO}\)=\(\widehat{CBO}\)(theo câu b)
BO cạnh chung
=> t.giác BFO=t.giác BCO(c.g.c)
=>CO=OF =>O là trung điểm của CF(1); \(\widehat{COB}\)=\(\widehat{FOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{COB}\)=\(\widehat{FOB}\)=90 độ =>BO\(\perp\)CF(2)
Từ (1) và (2) suy ra BE là trung trực của CF
học tốt!
a: AB=8(cm)
b: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BA=BD
BH chung
Do đó:ΔBAH=ΔBDH
Suy ra: HA=HD
c: Xét ΔAHK vuông tại A và ΔDHC vuông tại D có
HA=HD
\(\widehat{AHK}=\widehat{DHC}\)
Do đó: ΔAHK=ΔDHC
Suy ra: AK=DC
Ta có: BA+AK=BK
BD+DC=BC
mà BA=BD
và AK=DC
nên BC=BK
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
a) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)(đpcm)
Bạn tự vẽ hình nha
a.
Xét tam giác ABI và tam giác EBI có:
AIB = EIB ( = 900)
BI là cạnh chung
IBA = IBE (BI là tia phân giác của ABE)
=> Tam giác ABI = Tam giác EBI (g.c.g)
=> AB = EB (2 cạnh tương ứng)
b.
Xét tam giác ABD và tam giác EBD có:
BA = BE (theo câu a)
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (c.g.c)
=> BAD = BED (2 góc tương ứng)
mà BAD = 900
=> BED = 900
=> Tam giác BED vuông tại E
c.
BA = BE (theo câu a)
=> Tam giác BAE cân tại B
=> \(BAE=\frac{180^0-ABE}{2}\) (1)
Xét tam giác ADF và tam giác EDC có:
ADF = EDC (2 góc đối đỉnh)
AD = ED (tam giác ABD = tam giác EBD)
FAD = CED ( = 900)
=> Tam giác ADF = Tam giác EDC (g.c.g)
Ta có:
BF = BA + AF
BC = BE + EC
mà BA = BE (theo câu a)
AF = EC (tam giác ADF = tam giác EDC)
=> BF = BC
=> Tam giác BFC cân tại B
=> \(BFC=\frac{180^0-FBC}{2}\) (2)
Từ (1) và (2)
=> BAE = BFC
mà 2 góc này ở vị trí đồng vị
=> AE // FC
Chúc bạn học tốt
a) Xét ΔABD vuông tại A và ΔFBD vuông tại F có
BD là cạnh chung
BA=BF(gt)
Do đó: ΔABD=ΔFBD(cạnh huyền-cạnh góc vuông)
b) Xét ΔAED vuông tại A và ΔFCD vuông tại F có
DA=DF(ΔABD=ΔFBD)
\(\widehat{ADE}=\widehat{FDC}\)(hai góc đối đỉnh)
Do đó: ΔAED=ΔFCD(cạnh góc vuông-góc nhọn kề)
⇒AE=FC(hai cạnh tương ứng)
Ta có: AE+AB=EB(A nằm giữa E và B)
FC+FB=BC(F nằm giữa B và C)
mà AE=FC(cmt)
và AB=FB(gt)
nên EB=BC
Xét ΔABC vuông tại A và ΔFEB vuông tại F có
BC=EB(cmt)
BA=BF(gt)
Do đó: ΔABC=ΔFEB(cạnh huyền-cạnh góc vuông)
Thanks, cảm ơn bạn nhiều nha!!!!