Cho a < b. Chứng tỏ :
a/ 2a – 3 < 2b – 3
b/ 3a + 1 < 3b + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ a < b => 3a < 3b ( vì 3 >0 ) => 3a + 1 < 3b + 1.
Từ a < b => -2a > -2b ( vì -2 <0 ) => -2a + 1 > -2b +1.
Bài 1:
1) Ta có: a<b
⇔a+5<b+5
2) Ta có: a<b
⇔a-7<b-7
3) Ta có: a<b
⇔6a<6b
4) Ta có: a<b
⇔3a<3b
hay 3a+1<3b+1
5) Ta có: a<b
⇔2a<2b
⇔-2a>-2b
hay -2a-5>-2b-5
Bài 2:
1) Ta có: a+5<b+5
⇔a<b
2) Ta có: -3a>-3b
⇔a>b
1 . a) Thực hiện so sánh 3a và 3b, 3a+1 và 3b+1 từ đó rút ra điêu cần chứng minh
b) Thực hiện so sánh -2a và -2b, -2a - 5 và -2b -5 từ đó rút ra điêu cần chứng minh
Cậu tự trình bày nhé ? Giảng sơ sơ thế là hiểu ấy
a) Ta có: a < b
=> 2a < 2b vì 2 > 0
=> 2a - 3 < 2b - 3 (cộng vào cả hai vế -3)
b) Ta có: -3 < 5
=> 2b - 3 < 2b + 5 (cộng vào hai vế với 2b) mà 2a - 3 < 2b - 3 (chứng minh trên)
Vậy: 2a - 3 < 3b + 5 (tính chất bắc cầu)
a) Ta có: a < b
⇒ 2a < 2b
⇒ 2a - 3 < 2b - 3 (cộng vào cả hai vế với -3)
b) Ta có: a < b
⇒ 3a < 3b
⇒ 3a - 1 < 3b + 1 (cộng vào cả hai vế với 1)