Cho phương trình
\(\left(m-1\right)x^2-2\left(m-3\right)x+m+1=0\)0
Với điều kiện của m để pt có 2 nghiệm , tìm hệ thức liên hệ giữa x1, x2 đọc lập đối với tham số m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét
\(\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m+1\right)=m^2-6m+9-m^2-1=-6m+7\ge0\)
\(\Rightarrow m\le\frac{7}{6}\)
Theo Viete ta có:\(x_1+x_2=\frac{2\left(m-3\right)}{m-1}\left(1\right);x_1x_2=\frac{m+1}{m-1}\)
\(\Leftrightarrow x_1x_2\left(m-1\right)=m+1\Leftrightarrow x_1x_2m-m=1+x_1x_2\)
\(\Leftrightarrow m\left(x_1x_2-1\right)=1+x_1x_2\Leftrightarrow m=\frac{1+x_1x_2}{x_1x_2-1}\)
Thay vào ( 1 ) rồi rút gọn là OK nhá,nhác ko muốn tính :))
Theo định lí Viet thì \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1.x_2=\left(3m-3\right)^2\end{matrix}\right.\)
\(\dfrac{16}{9}.x_1.x_2=\dfrac{16}{9}.\left(3m-3\right)^2\)
⇒ \(\dfrac{16}{9}.x_1.x_2=\left[\dfrac{4}{3}.\left(3m-3\right)\right]^2\)
⇒ \(\dfrac{16}{9}.x_1.x_2=\left(4m-4\right)^2\)
⇒ \(\dfrac{16}{9}.x_1.x_2=\left(x_1+x_2-4\right)^2\)
Đối chiếu ⇒ \(\left\{{}\begin{matrix}a=-4\\b=\dfrac{16}{9}\end{matrix}\right.\)
⇒ \(\dfrac{b}{a}=\dfrac{-4}{9}\)
ĐK:\(m\ne1\)
Phương trình có 2 nghiệm \(\Leftrightarrow\)đen-ta\(\ge0.\)
\(\Leftrightarrow4m^2-24m+36-4m^2+4\ge0.\)
\(\Leftrightarrow-24m+40\ge0.\)
\(\Leftrightarrow m\le\frac{5}{3}.\)
Học tốt
ý 2 nek: áp dụng hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=\frac{2m-6}{m-1}\\x_1x_2=\frac{m+1}{m-1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2-\frac{4}{m-1}\\x_1x_2=1-\frac{2}{m-1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2-\frac{4}{m-1}\\2x_1x_2=2-\frac{4}{m-1}\end{cases}}\)
x1+x2-2x1x2=0.
vậy x1,x2 độc lập đối với m
học tốt