K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2023

b giúp mink câu a) So sánh CA,CD và CB.

1:

a: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

mà AB<AC

nên BD<CD

b: AB<AC
=>góc B>góc C

góc ADB=góc C+góc CAD

góc ADC=góc B+góc BAD

mà góc C<góc B và góc CAD=góc BAD

nên góc ADB<góc ADC

Bài 1:

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

mà AB>AC

nên BD>CD

Bài 1: Cho tam giác ABC cân tại A, chu vi bằng 20cm, cạnh đáy bằng 8cm. Hãy so sánh các góc của tam giácBài 2: Cho tam giác ABC, biết độ dài các cạnh tam giác có tỉ lệ AB:AC:BC = 3:4:5. Hãy so sánh các góc của tam giácBài 3: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy điểm D, E sao cho D nằm giữa A và E. Chứng minh rằng BA < BD < BE < BCBài 4: Cho tam giác ABC vuông tại B, CD là tia phân giác của góc C. Từ D...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A, chu vi bằng 20cm, cạnh đáy bằng 8cm. Hãy so sánh các góc của tam giác
Bài 2: Cho tam giác ABC, biết độ dài các cạnh tam giác có tỉ lệ AB:AC:BC = 3:4:5. Hãy so sánh các góc của tam giác
Bài 3: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy điểm D, E sao cho D nằm giữa A và E. Chứng minh rằng BA < BD < BE < BC
Bài 4: Cho tam giác ABC vuông tại B, CD là tia phân giác của góc C. Từ D kẻ đường thẳng vuông góc với AC tại E. Chứng minh rằng DE = DB < DA
Bài 5: Cho tam giác ABC có AB < AC. Gọi M là trung điểm BC. Trên tia đối của MA lấy điểm D sao cho MD = MA. Hãy so sánh góc CDA và góc CAD
Bài 6: Cho tam giác ABC có AB > AC, BN là phân giác của góc ABC, CM là phân giác của ACB, I là giao điểm của BN, CM. Hãy so sánh IC và IB, AM và BM
Bài 7: Cho tam giác ABC, có AB < AC. M là trung điểm của BC, AD là phân giác góc BAC. Chứng minh rằng: 
   a) Góc AMB < góc AMC
   b) Góc MAB > góc CAM
   c) Góc ADB < góc ADC
   d) CD < DB
Bài 8: Cho tam giác ABC vuông tại A. M là trung điểm của AC. Trên tia đối của MB lấy điểm E sao cho ME = MB. Chứng minh rằng:
   a) BC > CE; CE ⊥ AC
   b) Góc ABM > góc MBC

0
15 tháng 8 2019

b. Giả sử góc ngoài tại đỉnh B của tam giác ABC là ∠(xBC). Ta có:

∠(xBC) + ∠(ABD) = 180o ⇒ ∠(xBC) = 180o - ∠(ABD) (0.5 điểm)

∠(DEC) + ∠(AED) = 180o ⇒ ∠(DEC) = 180o - ∠(AED) (0.5 điểm)

Mà ∠(ABD) = ∠(AED) ( hai góc tương ứng vì ΔABD = ΔAED)(0.5 điểm)

 

Từ đó suy ra ∠(xBC) = ∠(DEC) (0.5 điểm)

a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)

AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

c: Xét ΔCDB có

BE,CA là trung tuyến

BE cắt CA tại I

=>I là trọng tâm

=>DI đi qua trung điểm của BC