Cho a,b,c là độ dài 3 cạnh của 1 tam giác. CMR \(|\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}|< 1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0
theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :
2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )
\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
Ta có a + b > c, b + c > a, a + c > b
Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)
vậy ...
Bài này là bài chốt trong đề thi hsg toán 9 cấp huyện năm nay của đức thọ đó!
bạn vào Thư viện đề thi THCS Hoàng Xuân Hãn rồi bấm vào mục ở dưới dưới ak tên mục là
Đáp án đề thi hsg toán 9 huyện Đức Thọ năm học 2018-2019 Đây là bài cuối của đề ak!
Đặt \(a=x+y;b=y+z;c=z+x\)
Thì bài toán trở thành \(\frac{x+y}{2\left(2x+y\right)}+\frac{y+z}{2\left(2y+z\right)}+\frac{z+x}{2\left(2z+x\right)}\ge1\)
\(< =>3-\frac{x}{2\left(2x+y\right)}-\frac{y}{2\left(2y+z\right)}-\frac{z}{2\left(2z+x\right)}\ge1\)
\(< =>\frac{x}{2x+y}+\frac{y}{2y+z}+\frac{z}{2z+x}\le1\)
\(< =>\frac{2x}{2x+y}+\frac{2y}{2y+z}+\frac{2z}{2z+x}\le2\)
\(< =>3-\frac{y}{2x+y}-\frac{z}{2y+z}-\frac{x}{2z+x}\le2\)
\(< =>\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\ge1\)
Áp dụng Bất đẳng thức AM-GM dạng cộng mẫu thức ta có :
\(\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z\)hay \(a=b=c\)
Vậy bài toán đã được chứng minh xong