Cho tam giac ABC co ABC co AB=3cm AC=4cm BC=5cm AH vuong voi BCtai h
a)So sanh tong 2 canh cua tam giac ABC voi canh con lai
b)So sanh BA va BH, ACva HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có \(\widehat{B}>\widehat{C}\)
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
CH chung
HA=HD
Do đo; ΔAHC=ΔDHC
c: Xét ΔACB và ΔDCB có
CA=CD
\(\widehat{ACB}=\widehat{DCB}\)
CB chung
Do đó: ΔACB=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)
a: Xét ΔABC có ˆB>ˆCB^>C^
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
CH chung
HA=HD
Do đo; ΔAHC=ΔDHC
c: Xét ΔACB và ΔDCB có
CA=CD
ˆACB=ˆDCBACB^=DCB^
CB chung
Do đó: ΔACB=ΔDCB
Suy ra: ˆBAC=ˆBDC=900
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
Ta có; S abc =1/2. AB.AC= 1/2.3.5=7,5 (cm vuông)
b, Gọi AH là đường cao hạ từ A xuống BC. Ta có công thức:
ah=bc ( tức là BC.AH=AB.AC), áp dụng vào ta có:
5.AH=15
=> AH=3 (cm)
tích đúng cho mình nhé!
Bai cua ban Khanh Luu lam sai rui hay sao e . Mk lam trong quyen 501 bai toan do lop 5 ma ket qua khong ra vay
Bài 6:
b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)
=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).
Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)
=> \(\widehat{ADB}+\widehat{HDB}=120^0\)
Mà \(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)
=> \(2.\widehat{ADB}=120^0\)
=> \(\widehat{ADB}=120^0:2\)
=> \(\widehat{ADB}=60^0.\)
=> \(\widehat{ADB}=\widehat{HBD}=60^0\)
Xét \(\Delta ABD\) có:
(định lí tổng ba góc trong một tam giác).
=> \(90^0+\widehat{ABD}+60^0=180^0\)
=> \(150^0+\widehat{ABD}=180^0\)
=> \(\widehat{ABD}=180^0-150^0\)
=> \(\widehat{ABD}=30^0\)
Vậy \(\widehat{ABD}=30^0.\)
Chúc bạn học tốt!
a) ta có : theo BĐT \(\Delta\)ta luôn có : tổng độ dài hai cạnh bất kỳ bao giờ cũng lớn hơn độ dài cạnh còn lại.
vậy áp dụng BĐT\(\Delta\)vào tam giác ABC ; ta được :
\(\hept{\begin{cases}AB+AC>BC\\AB+BC>AC\\AC+BC>AB\end{cases}}\)
b)xét \(\Delta AHB:\widehat{H}=90^o\)=>\(BA>HB\)(vì cạnh huyền là cạnh lớn nhất)
tương tự với tam giác AHC ta cũng được AC>HC vì cạnh huyền là cạnh lớn nhất