K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

a,\(x^5+x-1=x^5+x^4-x^2-x^4-x^3+x+x^3+x^2-1=\left(x^5+x^4-x^2\right)-\left(x^4+x^3-x\right)+\left(x^3+x^2-1\right)=x^2\left(x^3+x^2-1\right)+x\left(x^3+x^2-1\right)+\left(x^3+x^2-1\right)=\left(x^2+x+1\right)\left(x^3+x^2-1\right)\)b,\(y\left(y-2\right)-5=y^2-2y-5=\left(y^2-2y+1\right)-6=\left(y-1\right)^2-\sqrt{6^2}=\left(y-1-\sqrt{6}\right)\left(y-1+\sqrt{6}\right)\)

a: \(9x^3y^2+3x^2y^2\)

\(=3x^2y^2\cdot3x+3x^2y^2\cdot1\)

\(=3x^2y^2\left(3x+1\right)\)

b: \(x^2-2x+1-y^2\)

\(=\left(x^2-2x+1\right)-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1-y\right)\left(x-1+y\right)\)

1 tháng 11 2023

Cảm ơn bạn nhiều bạn, mong bạn sẽ giúp mình nhiều hơn nữa ạ

 

Bài 1: 

a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)

\(=\left(2x+1\right)\left(3-2x+5\right)\)

\(=\left(2x+1\right)\left(8-2x\right)\)

\(=2\left(4-x\right)\left(2x+1\right)\)

b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)

\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)

\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)

\(=\left(3x-2\right)\left(3x-6\right)\)

\(=3\left(3x-2\right)\left(x-2\right)\)

Bài 2: 

a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)

\(=\left(a-b\right)\left(2a-4b\right)\)

\(=2\left(a-b\right)\left(a-2b\right)\)

f: Ta có: \(x^2-6xy+9y^2+4x-12y\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x-3y+4\right)\)

16 tháng 11 2021

a) \(36a^4-y^2=\left(6a^2-y\right)\left(6a^2+y\right)\)

b) \(6x^2+x-2=2x\left(3x+2\right)-1\left(3x+2\right)=\left(3x+2\right)\left(2x-1\right)\)

16 tháng 11 2021

paylak về r hả iem =))

12 tháng 8 2016

bài a) bn trên đã dẫn link cho bn r

bài b)

Đặt x-y=a;y-z=b;z-x=c 

\(=>a+b+c=x-y+y-z+z-x=0\)

\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=a^3+b^3+c^3\)

Theo câu a)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) (do a+b+c=0)

\(=>a^3+b^3+c^3=3abc=>\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

a) Ta có :

\(a^3+b^3+c^3-3abc\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b^2\right)-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

P/s tham khảo nha

hok tốt

23 tháng 11 2021

\(a,=2x\left(x+3\right)\\ b,=x^3\left(x+3\right)+\left(x+3\right)=\left(x^3+1\right)\left(x+3\right)\\ =\left(x+1\right)\left(x+3\right)\left(x^2-x+1\right)\\ c,=64-\left(x-y\right)^2=\left(8-x+y\right)\left(8+x-y\right)\\ A=x^2+6x+5+x^3-8-x^2-x+2\\ A=x^3+5x-1\)

23 tháng 11 2021

a) 2x2+6x=2x(x+3)
b) x4+3x3+x+3=(x4+x)+(3x3+3)=x(x3+1)+3(x3+1)=(x+3)(x3+1)
c) 64-x2-y2+2xy=-(x2-2xy+y2)+82=8-(x+y)2=(8+x+y)(8-x-y)

A= (x+5)(x+1)+(x-2)(x2+2xx+4)-(x2+x-2)
A= x2+6x+5+x3-8-x2-x+2
A= x3+(x2-x2)+(6x-x)+(5-8+2)
A= x3+5x-1

b: \(\left(x^2+4\right)^2-16x^2\)

\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)

\(=\left(x-2\right)^2\cdot\left(x+2\right)^2\)

c: \(x^5-x^4+x^3-x^2\)

\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)

\(=x^2\left(x-1\right)\left(x^2+1\right)\)

AH
Akai Haruma
Giáo viên
18 tháng 8 2021

Lời giải:

a. Bạn xem lại đề

b. \((x^2+4)^2-16x^2=(x^2+4)^2-(4x)^2=(x^2+4-4x)(x^2+4+4x)\)

\(=(x-2)^2(x+2)^2\)

c.

\(x^5-x^4+x^3-x^2=x^4(x-1)+x^2(x-1)=(x^4+x^2)(x-1)\)

\(=x^2(x^2+1)(x-1)\)

7 tháng 5 2022

`a)5(x-y)-y(x-y)`

`=(x-y)(5-y)`

`b)x^2-6x-y^2+9`

`=(x^2-6x+9)-y^2`

`=(x-3)^2-y^2`

`=(x-3-y)(x-3+y)`

Bài 1:

a: \(3x-6y=3\cdot x-3\cdot2y=3\left(x-2y\right)\)

b: \(14x^2y-21xy^2+28x^2y^2\)

\(=7xy\cdot2x-7xy\cdot3y+7xy\cdot4xy\)

\(=7xy\left(2x-3y+4xy\right)\)

c: \(10x\left(x-y\right)-8y\cdot\left(y-x\right)\)

\(=10x\left(x-y\right)+8y\left(x-y\right)\)

\(=\left(x-y\right)\left(10x+8y\right)\)

\(=\left(2\cdot5x+2\cdot4y\right)\left(x-y\right)\)

\(=2\left(5x+4y\right)\left(x-y\right)\)

bài 2:

a: Đề thiếu vế phải rồi bạn

b: \(x^3-13x=0\)

=>\(x\left(x^2-13\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\x=\pm\sqrt{13}\end{matrix}\right.\)

8 tháng 12 2023

Bài 1:

a, $3x-6y$

$=3(x-2y)$

b, $14x^2y-21xy^2+28x^2y^2$

$=7xy(2x-3y+4xy)$

c, $10x(x-y)-8y(y-x)$

$=10x(x-y)-8y[-(x-y)]$

$=10x(x-y)+8y(x-y)$

$=(x-y)(10x+8y)$

$=2(x-y)(5x+4y)$

Bài 2:

a, Đề thiếu rồi bạn nhé.

b, \(x^3-13x=0\)

\(\Rightarrow x\left(x^2-13\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{matrix}\right.\)