Cho đường tròn (O:R) và 1 điểm M nằm ngoài đường tròn (O). Vẽ tiếp tuyến MA của đường tròn (O) với A là tiếp điểm. Vẽ dây cung AC của đường tròn tâm (O) vuông góc với MO tại H.
a) CMR: H là trung điểm của đoạn thẳng AC.
b)CMR: MC là tiếp tuyến của đường tròn (O).
c) Trên tia đối của tia AC lấy điểm Q. Từ Q vẽ 2 tiếp tuyến QD và QE của đường tròn (O) với D và E là 2 tiếp điểm. CMR: 3 điểm M,E,D thẳng hàng.
a) Xét tam giác OAH và tam giác OCH, có:
OA=OC=R ; OH chung ; \(\widehat{OHA}=\widehat{OHC}=90^{O^{ }}\)
=> Tam giác OAH = tam giác OCH (ch-cgv) => AH=HC (2 cạnh tương ứng)
<=> H là trung điểm cạnh AC (đpcm)
b) Ta có: AC vuông góc OM tại H, AH=CH nên OM là đường trung trực của AH => MA=MC
Xét tam giác OAM và tam giác OCM, có: OA=OC=R ; MA=MC ; OM chung
=> tam giác OAM = tam giác OCM(c.c.c) => \(\widehat{OAM}=\widehat{OCM}=90^o\)
<=> MC là tiếp tuyến của (O) (đpcm)