Cho tam giác nhọn ABC, các đường cao AD; BE; CF cắt nhau tại H. Vẽ HI _|_ EF tại I, HK _|_ DE tại K. IK cắt AD ở M, FM cắt DE ở N. F là điểm đối xứng của B qua D. CM: A,N,S thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AC=AF\cdot AB\)(ĐPCM)
b)
Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
Đề thì đúng nhưng đề này là đề học sinh giỏi thì thường quá!
Bạn chỉ cần dùng tứ giác nội tiếp là sẽ ra \(DH\) là phân giác \(\widehat{EDF}\) (tin mình đi). Tương tự với mấy đỉnh kia suy ra đpcm.
sai đề rồi đáng lẽ ABC là tam giác đều hoặc các đường cao AD BE CF là những đường trung trực
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)
\(\widehat{AKC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)
Do đó: \(\widehat{ABC}=\widehat{AKC}\)(Hệ quả góc nội tiếp)
hay \(\widehat{ABD}=\widehat{AKC}\)
Xét (O) có
\(\widehat{ACK}\) là góc nội tiếp chắn \(\stackrel\frown{AK}\)
\(sđ\stackrel\frown{AK}=180^0\)(AK là đường kính)
Do đó: \(\widehat{ACK}=90^0\)(Hệ quả góc nội tiếp)
Xét ΔADB vuông tại D và ΔACK vuông tại C có
\(\widehat{ABD}=\widehat{AKC}\)
Do đó: ΔADB\(\sim\)ΔACK(g-g)
giúp em vs ạ https://hoc24.vn/hoi-dap/tim-kiem?id=7957785622206&q=Cho+tam+gi%C3%A1c+ABC+nh%E1%BB%8Dn+n%E1%BB%99i+ti%E1%BA%BFp+(O;R).+%C4%90%C6%B0%E1%BB%9Dng+cao+AD,+BE,+CF+c%E1%BA%AFt+nhau+t%E1%BA%A1i+H.+CMR+:+N%E1%BA%BFu+AD+BC=BE+AC=CF+AB+th%C3%AC+tam+gi%C3%A1c+ABC+%C4%91%E1%BB%81u.
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiêp
=>góc AFE=góc ACB
mà góc FAE chung
nên ΔAFE đồng dạng với ΔACB
b: Xét ΔDAB vuông tại D và ΔDCH vuông tại D có
góc DAB=góc DCH
=>ΔDAB đồng dạng vơi ΔDCH
=>DA/DC=DB/DH
=>DA*DH=DB*DC
c: Xét ΔHDC vuông tại D và ΔHFA vuông tại F có
góc DHC=góc FHA
=>ΔHDC đồng dạng vơi ΔHFA
=>HD/HF=HC/HA
=>HF*HC=HD*HA
Xet ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE=HD*HA
Tứ giác FEAH có: \(\widehat{FAH}=\widehat{AEH}=90^o\)
=> Tứ giác FEAH nội tiếp => \(\widehat{HEF}=\widehat{FAH}\)
Tứ giác ABDE có: \(\widehat{ADB}=\widehat{AEB}=90^o\)
=> Tứ giác ABDE nội tiếp => \(\widehat{BAD}=\widehat{BED}\)
Vậy \(\widehat{HEF}=\widehat{BED}\)
Xét \(\Delta\)HIE \(\left(\widehat{HIE}=90^o\right)\)và \(\Delta\)HKE \(\left(\widehat{HKE}=90^o\right)\)có:
EH chung
\(\widehat{HEI}=\widehat{HEK}\)
=> \(\Delta HIE=\Delta HKE\) (cạnh huyền-góc nhọn)
=> \(\hept{\begin{cases}EI=EK\\HI=HK\end{cases}}\)(2 cạnh tương ứng)
=> \(\Delta\)KEI cân tại E, \(\Delta\)HIK cân tại H
\(\Rightarrow\widehat{KIE}=\frac{1}{2}\widehat{IEK}\Rightarrow\widehat{KIE}+\widehat{FAH}=90^o\)
Mà \(\widehat{MHF}=\widehat{FAH}=90^o\)
Do đó: \(\widehat{KIE}=\widehat{MHF}\)=> Tứ giác FIMH nội tiếp => \(\widehat{MHF}=\widehat{HIF}=90^o\)
Tứ giác HMNK có: \(\widehat{HMN}=\widehat{HKN}=90^o\)=> Tứ giác HMNK nội tiếp
Ta có: \(\hept{\begin{cases}\widehat{HFN}=\widehat{HIK}\\\widehat{HNM}=\widehat{HIK}\\\widehat{HIK}=\widehat{HKI}\end{cases}}\)
=> \(\Delta\)HFN đồng dạng \(\Delta\)HIK (g.g)
=> \(\frac{HF}{HI}=\frac{HN}{HK},HI=HK\Rightarrow HF=HN\)
\(\Delta\)HFN cân tại H, HM _|_ FN => HM là đường trung tuyến của tam giác HFN
FM _|_ AD, BD _|_ AD => FM//BD
MF=MN, DB=DC nên \(\frac{AM}{AD}=\frac{MN}{DS}\)
Xét \(\Delta\)AMN và \(\Delta\)ADS có:
\(\widehat{AMN}=\widehat{ADS}\left(MN//BS\right),\frac{AM}{AD}=\frac{MN}{DS}\)
=> \(\Delta\)AMN đồng dạng \(\Delta\)ADS (c.g.c)
=> \(\widehat{MAN}=\widehat{DAS}\)
=> 2 tia AN, AS trùng nhau => A,N,S thẳng hàng