cho P = ab(a+b)+2 với a,b \(_{\in Z}\)CMR nếu P chia hết cho 3 thì P chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 chia 3 dư 2 nên để P chia hết cho 3 thì \(Q=ab\left(a+b\right)\) chia 3 dư 1
\(\Rightarrow\) a và b đều chia 3 dư 2
Đặt \(a=3n+2\) ; \(b=3m+2\)
\(P=\left(3m+2\right)\left(3n+2\right)\left(3n+2+3m+2\right)+2\)
\(=\left(3m+2\right)\left(3n+2\right)\left(3\left(m+n\right)+4\right)+2\)
\(=\left[9mn+6\left(m+n\right)+4\right]\left[3\left(m+n\right)+4\right]+2\)
\(=9mn\left[3\left(m+n\right)+4\right]+18\left(m+n\right)^2+36\left(m+n\right)+18\)
Tất cả các số hạng của P đều chia hết cho 9 \(\Rightarrow\) P chia hết cho 9
Mình chưa hiểu lắm cái phần a và b đều chia 3 dư 2 , bạn có thể giải thích đc k
Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)
1, a, A = 5x + y chia hết 19
=> 5x + 19y + y chia hết 19
=> 5x + 20y chia hết 19
=> (5x + 20y)/5 chia hết 19 (vì 5 và 19 nguyên tố cùng nhau)
=> x + 4y chia hết 19
=> (5x + y) - (x + 4y) chia hết 19 (vì cả 2 đều chia hết 19)
=> (5x - x) + (y - 4y) chia hết 19
=> 4x - 3y chia hết 19
=> B chia hết cho 19 (điều phải chứng minh)
b, Những lí giải bài này gần tương tự bài trên, bạn suy ra hộ mình nhé!
4x + 3y chia hết 13
=> 4x + 3y + 13y chia hết 13
=> 4x + 16y chia hết 13
=> x + 4y chia hết 13 (1)
Lại có: 4x + 3y chia hết 13
=> 26x + 4x + 3y chia hết 13
=> 30x + 3y chia hết 13
=> 10x + y chia hết 13
=> (10x + y) - (4x + 3y) chia hết 13
=> 6x - 2y chia hết 13 (2)
(1)(2)=> (6x - 2y) + (x + 4y) chia hết 13
=> 7x + 2y chia hết 13
=> D chia hết 13 (điều phải chứng minh) 1, a, A = 5x + y chia hết 19
=> 5x + 19y + y chia hết 19
=> 5x + 20y chia hết 19
=> (5x + 20y)/5 chia hết 19 (vì 5 và 19 nguyên tố cùng nhau)
=> x + 4y chia hết 19
=> (5x + y) - (x + 4y) chia hết 19 (vì cả 2 đều chia hết 19)
=> (5x - x) + (y - 4y) chia hết 19
=> 4x - 3y chia hết 19
=> B chia hết cho 19 (điều phải chứng minh)
b, Những lí giải bài này gần tương tự bài trên, bạn suy ra hộ mình nhé!
4x + 3y chia hết 13
=> 4x + 3y + 13y chia hết 13
=> 4x + 16y chia hết 13
=> x + 4y chia hết 13 (1)
Lại có: 4x + 3y chia hết 13
=> 26x + 4x + 3y chia hết 13
=> 30x + 3y chia hết 13
=> 10x + y chia hết 13
=> (10x + y) - (4x + 3y) chia hết 13
=> 6x - 2y chia hết 13 (2)
(1)(2)=> (6x - 2y) + (x + 4y) chia hết 13
=> 7x + 2y chia hết 13
=> D chia hết 13 (điều phải chứng minh) 1, a, A = 5x + y chia hết 19
=> 5x + 19y + y chia hết 19
=> 5x + 20y chia hết 19
=> (5x + 20y)/5 chia hết 19 (vì 5 và 19 nguyên tố cùng nhau)
=> x + 4y chia hết 19
=> (5x + y) - (x + 4y) chia hết 19 (vì cả 2 đều chia hết 19)
=> (5x - x) + (y - 4y) chia hết 19
=> 4x - 3y chia hết 19
=> B chia hết cho 19 (điều phải chứng minh)
b, Những lí giải bài này gần tương tự bài trên, bạn suy ra hộ mình nhé!
4x + 3y chia hết 13
=> 4x + 3y + 13y chia hết 13
=> 4x + 16y chia hết 13
=> x + 4y chia hết 13 (1)
Lại có: 4x + 3y chia hết 13
=> 26x + 4x + 3y chia hết 13
=> 30x + 3y chia hết 13
=> 10x + y chia hết 13
=> (10x + y) - (4x + 3y) chia hết 13
=> 6x - 2y chia hết 13 (2)
(1)(2)=> (6x - 2y) + (x + 4y) chia hết 13
=> 7x + 2y chia hết 13
=> D chia hết 13 (điều phải chứng minh)
1, a, A = 5x + y chia hết 19
=> 5x + 19y + y chia hết 19
=> 5x + 20y chia hết 19
=> (5x + 20y)/5 chia hết 19 (vì 5 và 19 nguyên tố cùng nhau)
=> x + 4y chia hết 19
=> (5x + y) - (x + 4y) chia hết 19 (vì cả 2 đều chia hết 19)
=> (5x - x) + (y - 4y) chia hết 19
=> 4x - 3y chia hết 19
=> B chia hết cho 19 (điều phải chứng minh)
b, Những lí giải bài này gần tương tự bài trên, bạn suy ra hộ mình nhé!
4x + 3y chia hết 13
=> 4x + 3y + 13y chia hết 13
=> 4x + 16y chia hết 13
=> x + 4y chia hết 13 (1)
Lại có: 4x + 3y chia hết 13
=> 26x + 4x + 3y chia hết 13
=> 30x + 3y chia hết 13
=> 10x + y chia hết 13
=> (10x + y) - (4x + 3y) chia hết 13
=> 6x - 2y chia hết 13 (2)
(1)(2)=> (6x - 2y) + (x + 4y) chia hết 13
=> 7x + 2y chia hết 13
=> D chia hết 13 (điều phải chứng minh)
Ta có : a+5b chia hết cho 7
=> 4.(a+5b) chia hết cho 5
=> 4a+20b chia hết cho 7
Mà 14a+ 21b chia hết cho 7
=> (14a+21b) - ( 4a+20b)chia hết cho 7
=> 10a+b chia hết cho 7
x,y thuộc Z
A= (13+2)x -(26-3)y = 13x + 2x -26y + 3y =13(x-2y) + (2x+3y) = 13(x-2y) + B
A chia hết 13 => (2x+3y) chia hết 13 vì 13(x-2y) chắc chắn chia hết 13=> B chia hết 13
ngược lại cũng đúng.
Bài làm: ( Toán lớp 6 ).
x , y đều thuộc Z.
A = ( 13 + 2 )x - ( 26 - 3)y.
= 13x + 2x - 26y + 3y.
= 13( x - 2y ) + ( 2x + 3y ) = 13 ( x - 2y ) + B.
Vì A chia hết cho 13.
Suy ra: ( 2x + 3y ) : 13.
Vì 13( x - 2y ) : 13.
Suy ra: B chia hết cho 13.
Học tốt #
Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc
=(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc
=ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc
=(a+b+c)(ab+ac+bc)-2abc
thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4 (1)
Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4 (2)
Tù (1) và (2)=>P chia hết cho 4
câu 1 nếu A chia hết cho 2 thì A là số chẵn
nếu A không chia hết cho 2 thì A là số lẻ
câu 2 :
a) có thể chia hết cho 6
số chia hết cho 9 thì chia hết cho 3