K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2020

Hình bạn tự kẻ nhé!

Xét tam giác ABC vuông tại A có:

             AB2 + AC2 = BC2      ( định lý Pytago )

=>              62 + 8= BC2

<=>            36 + 64 = BC2

<=>                  100 = BC2

<=>                   BC = 10 (cm)       ( vì BC > 0 )

Xét tam giác ABC có: BD là đường pg của tam giác ABC

 =>              DA / DC = AB / BC

 => DA / ( DA + DC ) = AB/ ( BC + AB )

<=>              DA / AC = 3/8

<=>                AD / 8  = 3/8

 <=>                     AD = 3 (cm)

Vậy AD = 3 cm. 

11:

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot6\cdot12}{6+12}\cdot\dfrac{1}{2}=4\left(cm\right)\)

12:

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot3\cdot6}{3+6}\cdot\dfrac{1}{2}=\dfrac{3\cdot6}{3+6}=\dfrac{18}{9}=2\left(cm\right)\)

15 tháng 4 2022

a) Áp dụng định lí Py-ta-go vào ΔABC vuông tại A ta có:

 \(BC^{ }=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=\sqrt{100}=10\left(cm\right)\)

 Xét ΔABC có BD là p/g \(\widehat{ABC}\),theo t/c ta có:

\(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}hay\dfrac{DC}{10}=\dfrac{AD}{6}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{DC}{10}=\dfrac{AD}{6}=\dfrac{DC+AD}{10+6}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

=>\(\left\{{}\begin{matrix}DC=10.\dfrac{1}{2}=5\left(cm\right)\\AD=6.\dfrac{1}{2}=3\left(cm\right)\end{matrix}\right.\)

b) Ta có: \(\widehat{ABD}+\widehat{BDA}=\widehat{BAD}=90^o\)

               \(\widehat{DBH}+\widehat{BIH}=\widehat{BHI}=90^o\)

Mà \(\widehat{ABD}=\widehat{DBH}\)(DB là p/g \(\widehat{ABC}\)) ⇒\(\widehat{BDA}=\widehat{BIH}\)

Lại có \(\widehat{AID}=\widehat{BIH}\)( 2 góc đối đỉnh)

\(\widehat{BDA}=\widehat{AID}\) 

⇒ΔAID cân tại A

c) Xét ΔABD và ΔHBI có:

\(\widehat{BAD}=\widehat{BHI}=90^o\left(gt\right)\)

\(\widehat{ABD}=\widehat{IBH}\)(BD là p/g \(\widehat{ABC}\)

⇒ΔABD ~ ΔHBI(g-g)

\(\dfrac{AD}{IH}=\dfrac{BD}{BI}\)\(\dfrac{AD}{BD}=\dfrac{IH}{BI}\)

Mà AD=AI(ΔAID cân tại A)⇒\(\dfrac{AI}{BD}=\dfrac{IH}{BI}\Rightarrow AI.BI=BD.IH\left(đpcm\right)\)

 

 

 

 

 

17 tháng 4 2017

Tam giác vuông BAC có ∠A = 90o

Áp dụng định lí Pitago, ta có:

BC2 = AB2 + AC2

= 62 + 82 = 36 + 64 = 100

⇒ BC = 10 (cm)

Kẻ IF ⊥ BC

Xét hai tam giác vuông IDB và IFB, ta có:

∠(IDB) = ∠(IFB) = 90o

∠(DBI) = ∠(FBI) (gt)

cạnh huyền BI chung

Suy ra: ΔIDB = ΔIFB (cạnh huyền, góc nhọn)

Suy ra: DB = FB (hai cạnh tương ứng) (4)

Xét hai tam giác vuông IEC và IFC, ta có:

∠(IEC) = ∠(IFC) = 90o

∠(ECI) = ∠(FCI) (gt)

cạnh huyền CI chung

Suy ra: ΔIEC = ΔIFC (cạnh huyền, góc nhọn)

Suy ra: CE = CF (hai cạnh tương ứng) (5)

Mà: AD + AE = AB - DB + AC - CE

Suy ra: AD + AE = AB + AC - (DB + CE) (6)

Từ (4), (5) và (6) suy ra: AD + AE = AB + AC - (FB + FC)

= AB + AC - BC = 6 + 8 - 10 = 4 (cm)

Mà AD = AE (chứng minh trên)

Nên AD = AE = 4 : 2 = 2(cm).

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{B}\) chung

Do đó: ΔABC∼ΔHBA(g-g)

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BC\cdot BH\)(đpcm)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: \(AB^2=BC\cdot BH\)(cmt)

nên \(BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=\dfrac{36}{10}=3.6\left(cm\right)\)

Vậy: BH=3,6cm

28 tháng 3 2022

Xét ΔABC vuông ở A, theo định lý Pi-ta-go ta được :

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Ta có : AD là phân giác \(\widehat{BAC}\)

\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}\)

hay \(\dfrac{BD}{DC}=\dfrac{6}{8}\)

\(\Rightarrow\dfrac{BD}{6}=\dfrac{DC}{8}=\dfrac{BD+DC}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)

\(\Rightarrow BD=\dfrac{5}{7}.6=\dfrac{30}{7}\left(cm\right)\)

\(\Rightarrow DC=\dfrac{5}{7}.8=\dfrac{40}{7}\left(cm\right)\)

28 tháng 3 2022

Hình bạn tự kẻ nhé!

Xét tam giác ABC vuông tại A có:

             AB2 + AC2 = BC2      ( định lý Pytago )

=>              62 + 8= BC2

<=>            36 + 64 = BC2

<=>                  100 = BC2

<=>                   BC = 10 (cm)       ( vì BC > 0 )

Xét tam giác ABC có: BD là đường pg của tam giác ABC

 =>              DA / DC = AB / BC

 => DA / ( DA + DC ) = AB/ ( BC + AB )

<=>              DA / AC = 3/8

<=>                AD / 8  = 3/8

 <=>                     AD = 3 (cm)

Vậy AD = 3 cm. 

23 tháng 3 2021

undefined

18 tháng 4 2021

bạn nào có lời giải bài này thì cho mk xin vs ạ :<

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

DO đó: ΔBAD=ΔBED

Suy ra: BA=BE

hay ΔBAE cân tại B

27 tháng 3 2021

a/ \(BD\) là đường phân giác \(\widehat{BAC}\)

\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)

\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)

\(\to\begin{cases}DA=3\\DC=5\end{cases}\)

b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)

\(\to AB.AC=AH.BC\)

\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm