Cho tứ giác ABCD có AD=BC và AB<CD. Trung điểm của cạnh AB và CD lần lượt là
M và N. Trung điểm của các đường chéo BD và AC lần lượt là P và Q.
a) Chứng minh tứ giác MPNQ là hình thoi
b) Kéo dài hai cạnh DA và CB cắt nhau tại G, kẻ tia phân giác Gx của góc AGB. Chứng
minh Gx//MN.
c) Tứ giác ABCD cần thêm điều kiện gì để MPNQ là hình vuông? Chứng minh.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/nối AC
Do AB//CD=>BAC=ACD(so le trong)
Do AD//BC=>ACB=DAC(so le trong)
Xét ∆ABC và ∆ACD
ACB=DAC(chứng minh trên)
BAC=DAC(chứng minh trên)
AC chung
Vậy ∆ABC=∆CDA(g.c.g)=>AB=DC(cặp cạnh tương ứng)
AD=BC(cặp cạnh tương ứng)
Chứng minh rằng AK=KC,BI=ID
vì FE là đường trung bình hình thang nên FE//AB//CD
E, F là trung điểm của AD và BC nên AK=KC
BI=ID
( trong tam giác đường thẳng qua trung điểm của 1 cạnh, // với cạnh thứ 2 thì qua trung điểm cạnh thứ 3)
Xét t/g ABC và t/g CDA có :
AC cạnh chung
AB = CD ( gt )
\(\widehat{A1}=\widehat{C1}\)( slt , AB // CD )
\(\Rightarrow\)t/g ABC = t/g CDA ( c-g-c )
\(\Rightarrow\)BC = AD
\(\widehat{A2}=\widehat{C2}\) và 2 góc này ở vị trí slt
\(\Rightarrow\)BC // AD
b: Xét tứ giác ABCD có
AB=CD
AD=BC
Do đó: ABCD là hình bình hành
Suy ra: AB//CD;AD//BC
\(\text{AB song song với CD và AB=CD}\Rightarrow ABCD\text{ là hình bình hành}\)
\(\Rightarrow AD\text{//}BC\text{ và }AD=BC\)
Xét tứ giác ABCD có
AB//CD
AD//BC
DO đó: ABCD là hình bình hành
Suy ra: AB=CD; AD=BC
AB=BM
nên \(S_{QAB}=S_{QBM}\)
DA=AQ
=>\(S_{BDA}=S_{BAQ}\)
=>\(S_{QAM}=2\cdot S_{ABD}\)
Tương tự, ta được: \(S_{MBN}=2\cdot S_{ABC};S_{NCP}=2\cdot S_{BCD};S_{PDQ}=2\cdot S_{ADC}\)
=>\(S_{MNPQ}=5\cdot S_{ABCD}=300\left(cm^2\right)\)
Bạn ơi có đáp án câu này không mình xin với. Mình cũng đang học
Bạn có thể vô link này tham khảo tuy là không được đầy đủ. Nếu có tg mik làm lại cho.
Câu hỏi của nguyen thanh lan - Toán lớp 8 - Học toán với OnlineMath