K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 4 2020

Đặt \(A=6n^2+10n+\sqrt{n^2+2n+52}+2018\)

Để A là SCP trước hết A phải là số hữu tỉ

\(\Rightarrow\sqrt{n^2+2n+52}\) nguyên

\(\Rightarrow\sqrt{n^2+2n+52}=k\in N\)

\(\Rightarrow\left(n+1\right)^2+51=k^2\)

\(\Rightarrow\left(k-n-1\right)\left(k+n+1\right)=51\)

\(\Rightarrow\left[{}\begin{matrix}n=6\\n=24\end{matrix}\right.\)

Thay \(n=6\Rightarrow A=2304=48^2\left(tm\right)\)

\(n=24\Rightarrow A=5740\left(l\right)\)

12 tháng 1 2019

các số chứ ko phải cặp số nha

12 tháng 1 2019

mới có lớp 6 thôi à

DD
20 tháng 6 2021

\(n^2+2n+\sqrt{n^2+2n+18}+9\)là số chính phương thì \(\sqrt{n^2+2n+18}\)là số tự nhiên.

Khi đó \(n^2+2n+18=m^2\)

\(\Leftrightarrow\left(m-n-1\right)\left(m+n+1\right)=1.17\)

Do \(m,n\)là số tự nhiên nên 

\(\hept{\begin{cases}m-n-1=1\\m+n+1=17\end{cases}}\Leftrightarrow\hept{\begin{cases}m=9\\n=7\end{cases}}\)

Với \(n=7\)thì \(n^2+2n+\sqrt{n^2+2n+18}+9=7^2+2.7+\sqrt{7^2+2.7+18}+9\)

\(=81=9^2\)là số chính phương (thỏa mãn).

Vậy \(n=7\).

29 tháng 12 2023

a, Ta có : 8 ⋮ n + 1

=> n + 1∈ Ư(8) ∈ {1;2;4;8} ( Vì đề bạn là số tự nhiên nha)

=> n ∈ {0;1;3;7}

b, 10n + 14 ⋮ 2n + 2

=> (10n + 10) + 4 ⋮ 2n + 2

=> 5(2n + 2) + 4 ⋮ 2n + 2

Vì 5(2n + 2) ⋮ 2n + 2 nên 4 ⋮ 2n + 2

=> 2n + 2 ∈ Ư(4) ∈ {1;2;4)

=> 2(n + 1) ∈ {1;2;4}

Mà 2(n + 1) luôn chẵn => 2(n + 1) = 2;4

=> n = 0;1

29 tháng 12 2023

Giúp mình với ạ. Mình đang cần gấp!!!

17 tháng 11 2018

Gọi số cần tìm là a 
Suy ra (a+2) chia hết cho cả 3,4,5,6 
Vậy (a+2) là Bội chung của 3,4,5,6 
=>(a+2)=60k (với k thuôc N) 
vì a chia hết 11 nên 
60k chia 11 dư 2 
<=>55k+5k chia 11 dư 2 
<=>5k chia 11 dư 2 
<=>k chia 11 dư 7 
=>k=11d+7 (với d thuộc N) 
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)