Hệ phương trình :\(\left\{{}\begin{matrix}x+2y=1\\2x+5=-4y\end{matrix}\right.\)có bao nhiêu nghiệm ?
A. Vô nghiệm B.1 nghiệm duy nhất C.Hai nghiệm D.Vô số nghiệm Hệ phương trình :\(\left\{{}\begin{matrix}2x-3y=5\\4x+my=2\end{matrix}\right.\)vô nghiệm khi : A. m = -6 B. m = 1 C. m = -1 D. m = 6Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,x-3y=2`
`<=>x=3y+2` ta thế vào phương trình trên:
`2(3y+2)+my=-5`
`<=>6y+4+my=-5`
`<=>y(m+6)=-9`
HPT có nghiệm duy nhất:
`<=>m+6 ne 0<=>m ne -6`
HPT vô số nghiệm
`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`
HPT vô nghiệm
`<=>m+6=0,-6 ne 0<=>m ne -6`
b,HPT có nghiệm duy nhất
`<=>m ne -6`(câu a)
`=>y=-9/(m+6)`
`<=>x=3y+2`
`<=>x=(-27+2m+12)/(m+6)`
`<=>x=(-15+2m)/(m+6)`
`x+2y=1`
`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`
`<=>(2m-33)/(m+6)=1`
`2m-33=m+6`
`<=>m=39(TM)`
Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`
b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)
Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)
\(\Leftrightarrow2m-33=m+6\)
\(\Leftrightarrow2m-m=6+33\)
hay m=39
Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
a: Để hệ phương trình vô nghiệm thì
\(\dfrac{1}{-2}=\dfrac{-m}{2}< >\dfrac{4}{4m}=\dfrac{1}{m}\)
=>\(\left\{{}\begin{matrix}\dfrac{1}{2}=\dfrac{m}{2}\\-m^2< >2\left(luônđúng\right)\end{matrix}\right.\Leftrightarrow m=1\)
b: Để hệ phương trình có 1 nghiệm duy nhất thì \(\dfrac{1}{-2}< >\dfrac{-m}{2}\)
=>\(\dfrac{1}{2}\ne\dfrac{m}{2}\)
=>\(m\ne1\)
c: Để hệ có vô số nghiệm thì \(\dfrac{1}{-2}=\dfrac{-m}{2}=\dfrac{4}{4m}\)
=>\(\left\{{}\begin{matrix}\dfrac{1}{2}=\dfrac{m}{2}\\\dfrac{-m}{2}=\dfrac{1}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m^2=-2\left(vôlý\right)\end{matrix}\right.\)
=>\(m\in\varnothing\)
chỉ có vô nghiệm hoặc vô số nghiệm nhé bạn
vô nghiệm khi x=-2
vô số nghiệm khi x khác -2 nhé
\( \left\{ \begin{array}{l} x + 2y = 1\\ 2x + 5 = - 4y \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x + 2y = 1\\ 2x + 4y = - 5 \end{array} \right.\left( {VN} \right) \Rightarrow A\\ \left\{ \begin{array}{l} 2x - 3y = 5\\ 4x + my = 2 \end{array} \right. \Leftrightarrow \dfrac{2}{4} = \dfrac{{ - 3}}{m} \Leftrightarrow 2m = - 12 \Leftrightarrow m = - 6 \ne \dfrac{5}{2} \Rightarrow A \)