Bài 1:
Q = \(\left(\dfrac{1}{\sqrt{a}+1}\right)\).\(\left(\dfrac{1}{a+\sqrt{a}}\right)\):\(\dfrac{\sqrt{a}-1}{a+2\sqrt{a+1}}\)
a, rút gọn
b, so sánh Q với 1
*) Q = \(\dfrac{1}{x-2\sqrt{x+3}}\) tìm giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=1:\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right)\)
\(=1:\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
b: \(P-3=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)
=>P>3
\(a,A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\left(dk:x\ge0,x\ne1\right)\)
\(=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}\left(x-1\right)+\left(x-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}+1-2}{x-1}\right)\)
\(=\dfrac{x-1-2\sqrt{x}+2}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\dfrac{x-1}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(b,x-3\sqrt{x}+2=0\Leftrightarrow x-\sqrt{x}-2\sqrt{x}+2=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)
Thay \(x=4\) vào A :
\(A=\dfrac{\sqrt{4}-1}{\sqrt{4}+1}=\dfrac{2-1}{2+1}=\dfrac{1}{3}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{1}{a+\sqrt{a}}\right):\dfrac{\sqrt{a}-1}{a+2\sqrt{a}+1}\)
\(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)
\(=\dfrac{\sqrt{a}+1}{\sqrt{a}}\)
b) Ta có: \(Q-1=\dfrac{\sqrt{a}+1}{\sqrt{a}}-\dfrac{\sqrt{a}}{\sqrt{a}}=\dfrac{1}{\sqrt{a}}>0\forall a\) thỏa mãn ĐKXĐ
nên Q>1
a: ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{1}{a+\sqrt{a}}\right):\dfrac{\sqrt{a}-1}{a+2\sqrt{a}+1}\)
\(=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}}\)
a) Ta có: \(P=\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right)\cdot\left(1-\dfrac{1}{\sqrt{a}}\right)\)
\(=\dfrac{1+\sqrt{a}-1+\sqrt{a}}{-\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}-1}{\sqrt{2}}\)
\(=\dfrac{-2}{\sqrt{a}+1}\)
b) Ta có: \(P=\dfrac{-1}{2}\)
nên \(\dfrac{2}{\sqrt{a}+1}=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{a}+1=4\)
\(\Leftrightarrow a=9\)(thỏa ĐK)
a) Ta có: \(Q=\left(\dfrac{x-1}{\sqrt{x}-1}-\dfrac{x\sqrt{x}-1}{x-1}\right):\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)^2\)
\(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}-\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x-2\sqrt{x}+1+\sqrt{x}}{\sqrt{x}+1}\right)^2\)
\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\right):\left(\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)^2\)
\(=\dfrac{x+2\sqrt{x}+1-x-\sqrt{x}-1}{\sqrt{x}+1}:\dfrac{\left(x-\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)^2}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\left(x-\sqrt{x}+1\right)^2}\)
\(=\dfrac{x+\sqrt{x}}{\left(x-\sqrt{x}+1\right)^2}\)
a: \(Q=\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{a+\sqrt{a}}\right):\dfrac{\sqrt{a}-1}{a+2\sqrt{a}+1}\)
\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)
\(=\dfrac{a+2\sqrt{a}+1}{a-\sqrt{a}}\)
bn có thể giúp mk nốt 2 câu đc ko