\((1/49-1/2^2)*(1/49-1/3^2)*.....*(1/49-1/40^2)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có nếu theo quy luật như trên thì sẽ có 1 thừa số là\(\frac{1}{49}-\frac{1}{7^2}\)
Mà chúng bằng 0 nên tích trên bằng 0
quên đề mất
đề:thực hiện phép tính theo cách hớp lí(nếu có thể)
CẢM ƠN TRƯỚC
bài này bằng 0 đó bạn
trong chỗ... sẽ có 1/49 trừ 1/72 (=0)
nên cả tích đó bằng 0
bạn tự tình bài nha
\(A=\left(\dfrac{1}{49}-\dfrac{1}{2^2}\right)\left(\dfrac{1}{49}-\dfrac{1}{3^2}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{100^2}\right)\)
\(=\left(\dfrac{1}{49}-\dfrac{1}{7^2}\right)\left(\dfrac{1}{49}-\dfrac{1}{2^2}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{100^2}\right)\)
\(=\left(\dfrac{1}{49}-\dfrac{1}{49}\right)\left(\dfrac{1}{49}-\dfrac{1}{4}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{10000}\right)\)
=0
So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2
S=
=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50
P=
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50=1
vậy s/p = 1/50
P = 1/49+2/48+3/47+...+48/2+49/1
Cộng 1 váo mỗi p/s trong 48 p/s đầu , trừ p/s cuối đi 48 ta đượ
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50
Đưa ps cuối lên đầu
P=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50.S
VậyS/P=1/50