K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2020

Câu 1:

\(a=3>0\)

\(\Delta'=\left(m+5\right)^2-3\left(-m^2+2m+8\right)=\left(2m+1\right)^2\)

TH1: \(\Delta'=0\Rightarrow m=-\frac{1}{2}\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1\le-1< 1\le x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\frac{1}{2}\\f\left(-1\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\frac{1}{2}\\-m^2+4m+21\le0\\-m^2+1\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\frac{1}{2}\\\left[{}\begin{matrix}m\le-3\\m\ge7\end{matrix}\right.\\\left[{}\begin{matrix}m\le-1\\m\ge1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m\le-3\\m\ge7\end{matrix}\right.\)

NV
2 tháng 4 2020

Câu 2:

- Với \(m=-1\Rightarrow6x+6< 0\Rightarrow x< -1\)

- Với \(m\ne-1\)

\(\Delta'=\left(2m-1\right)^2+\left(m+1\right)\left(4m-2\right)=8m^2-2m-1\)

TH1: \(m>-1\)

+ Nếu \(\Delta\le0\Leftrightarrow-\frac{1}{4}\le m\le\frac{1}{2}\Rightarrow\) BPT vô nghiệm

+ Nếu \(\Delta>0\Leftrightarrow\left[{}\begin{matrix}-1< m< -\frac{1}{4}\\m>\frac{1}{2}\end{matrix}\right.\)

BPT có nghiệm: \(\frac{2m-1-\sqrt{\Delta}}{m+1}< x< \frac{2m-1+\sqrt{\Delta}}{m+1}\)

TH2: \(m< -1\)

\(\Rightarrow\Delta=8m^2-2m-1>0\)

\(\Rightarrow\) BPT có nghiệm: \(\left[{}\begin{matrix}x>\frac{2m-1-\sqrt{\Delta}}{m+1}\\x< \frac{2m+1+\sqrt{\Delta}}{m+1}\end{matrix}\right.\)

NV
10 tháng 5 2021

- Với \(m=\pm1\) không thỏa mãn

- Với \(m\ne\pm1\) ta có: 

\(\Delta'=16m^2-\left(m^2-1\right)\left(9-m^2\right)=\left(m^2+3\right)^2>0\) ; \(\forall m\)

\(\Rightarrow\) BPT đã cho đúng với mọi \(x\ge0\) khi và chỉ khi: \(\left\{{}\begin{matrix}m^2-1>0\\x_1< x_2\le0\end{matrix}\right.\) (pt hệ số a dương đồng thời có 2 nghiệm ko dương)

\(\Leftrightarrow\left\{{}\begin{matrix}a=m^2-1>0\\x_1+x_2=\dfrac{8m}{m^2-1}< 0\\x_1x_2=\dfrac{9-m^2}{m^2-1}\ge0\end{matrix}\right.\) \(\Leftrightarrow-3\le m< -1\)

(Nếu \(\Delta\) không luôn dương với mọi m, ví dụ dạng \(\Delta=m^2-3m+2\) chẳng hạn thì còn 1 TH thỏa mãn nữa là \(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\))

10 tháng 5 2021

Tại sao pải là 2 nghiệm ko dương ạ

12 tháng 3 2021

1.

Nếu \(m=0\)\(f\left(x\right)=2x\)

\(\Rightarrow m=0\) không thỏa mãn

Nếu \(x\ne0\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)

16 tháng 4 2021

2.

\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow x^2-mx+1>0\forall x\)

\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)

Kết luận: \(-2< m< 2\)

11 tháng 8 2015

a) Với \(x\in\left[0;1\right]\) => x  - 2 < 0 => |x - 2| = - (x -2)

Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\)  (*)  với mọi \(x\in\left[0;1\right]\)

+) Xét m - 1 > 0 <=> m > 1 

(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2

Kết hợp điều kiện m > 1 =>1 <  m \(\le\) 2

+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn

+) Xét m - 1 < 0 <=> m < 1

(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1

Kết hợp các trường hợp : Với  0 \(\le\)\(\le\) 2 thì .....

b)  Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)

Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => x< 2 => |x- 2| = - (x- 2)

xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\) 

+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < x< 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\) 

Giải (a) <=> 1 < m < 2

Giải (b) <=> m < 1 hoặc m > 4/3

Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2

+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí

Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)

 

19 tháng 3 2021

1.

\(2\left|x-m\right|+x^2+2>2mx\)

\(\Leftrightarrow\left(x-m\right)^2+2\left|x-m\right|-m^2+2>0\)

\(\Leftrightarrow t^2+2t-m^2+2>0\left(t=\left|x-m\right|\ge0\right)\)

\(\Leftrightarrow m^2< f\left(t\right)=t^2+2t+2\)

Yêu cầu bài toán thỏa mãn khi \(m^2< minf\left(t\right)=2\)

\(\Leftrightarrow-\sqrt{2}< m< 2\)

Vậy \(-\sqrt{2}< m< 2\)

19 tháng 3 2021

2.

\(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\)

\(\Leftrightarrow\left(x+m\right)^2+2\left|x+m\right|+2m^2-3m+1< 0\)

\(\Leftrightarrow\left(\left|x+m\right|+1\right)^2< -2m^2+3m\)

Ta có \(VT=\left(\left|x+m\right|+1\right)^2=\left(-\left|x+m\right|-1\right)^2\le\left(-1\right)^2=1\)

Yêu cầu bài toán thỏa mãn khi \(VP=-2m^2+3m>1\)

\(\Leftrightarrow2m^2-3m+1< 0\)

\(\Leftrightarrow\dfrac{1}{2}< m< 1\)

NV
27 tháng 6 2021

a.

\(\Leftrightarrow x^3+3x^2+x+1\ge mx\) ; \(\forall x\ge0\) (1)

- Với \(x=0\) thỏa mãn

- Với \(x>0\)

(1) \(\Leftrightarrow x^2+3x+1+\dfrac{1}{x}\ge m\)

\(\Leftrightarrow m\le\min\limits_{x>0}\left(x^2+3x+1+\dfrac{1}{x}\right)\)

Xét \(f\left(x\right)=x^2+3x+1+\dfrac{1}{x}\) với \(x>0\)

\(f'\left(x\right)=2x+3-\dfrac{1}{x^2}=0\Leftrightarrow\dfrac{\left(2x-1\right)\left(x+1\right)^2}{x^2}=0\Rightarrow x=\dfrac{1}{2}\)

Từ BBT ta thấy \(f\left(x\right)_{min}=f\left(\dfrac{1}{2}\right)=\dfrac{19}{4}\)

\(\Rightarrow m\le\dfrac{19}{4}\)

15 tháng 3 2021

Với \(m=0\Rightarrow f\left(x\right)=-2x-1\le0\Leftrightarrow x\ge-\dfrac{1}{2}\)

\(\Rightarrow m=0\) không thỏa mãn yêu cầu bài toán.

Với \(m\ne0\)\(f\left(x\right)\le0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=1+m\le0\end{matrix}\right.\Leftrightarrow m\le-1\)

\(\Rightarrow m\in\left\{m\in Z|-10< m\le-1\right\}\)

Vậy có 9 số nguyên thỏa mãn yêu cầu bài toán.

27 tháng 2 2016

giả sử :  \(\frac{mx+m}{\left(m+1\right)x-m+2}>0\)\(,\text{∀}x\in\left[0;2\right]\)

\(\Rightarrow\frac{m.0+m}{\left(m+1\right).0-m+2}>0\)    \(\Rightarrow\frac{m}{2-m}>0\)

                               \(\Rightarrow0\)\(<\)\(m<\)\(2\)

ngược lại \(0<\)\(m<2\) thì:

\(mx+m>0,\text{∀}x\in\left[0;2\right]\)

\(\left(m+1\right)x\ge0>m-2,\)\(\text{∀}x\in\left[0;2\right]\)

\(\Rightarrow\left(m+1\right)x-m+2>0,\text{∀}x\in\left[0;2\right]\)

\(\Rightarrow\frac{mx+m}{\left(m+1\right)x-m+2}>0,\text{∀}x\in\left[0;2\right]\)

vậy:  \(0\)\(<\)\(m<\)\(2\) là kết quả cần tìm

13 tháng 3 2021

Chưa đủ đề bạn ơi

À đr mik viết thiếu cảm ơn bn nha 

21 tháng 7 2015

a/ Với x ∈ [0;1] thì

\(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

\(+m-1=0\Leftrightarrow m=1\text{ thì }f\left(x\right)=-1<0\text{ với mọi }x\in\left[0;1\right]\)

\(+m-1>0\Leftrightarrow m>1\text{ thì }2\left(m-1\right).0-m\le2\left(m-1\right)x-m\le2\left(m-1\right).1-m\)

\(\Rightarrow f\left(x\right)\le m-2\text{ với mọi }x\in\left[0;1\right]\)

Để f(x) < 0 thì m - 2 < 0 <=> m < 2.

Vậy 1 < m < 2.

\(+m-1<0\)\(\Leftrightarrow m<1\)thì \(2\left(m-1\right).1-m\le f\left(x\right)\le2\left(m-1\right).0-m\)

\(\Rightarrow f\left(x\right)\le-m\text{ với mọi }x\in\left[0;1\right]\)

Để f(x) < 0 thì -m < 0 <=> m > 0

Vậy 0 < m < 1.

Kết luận: \(m\in\left(0;2\right)\)

b/ đồ thị hàm số cắt trục hoành tại 1 điểm thuộc (1;2) <=> f(x) có 1 nghiệm trong khoảng (1;2)

Với x ∈ (1;2) thì \(f\left(x\right)=2\left(m-1\right)x-m\)

Xét phương trình \(2\left(m-1\right)x-m=0\)

\(+m=1\text{ thì pt thành }-1=0\text{ (vô lí)}\)

\(+\text{Xét }m\ne1.pt\Leftrightarrow x=\frac{m}{2\left(m-1\right)}\)

\(x\in\left(1;2\right)\Rightarrow2>\frac{m}{2\left(m-1\right)}>1\)

Giải bất phương trình trên để được \(\frac{4}{3}<\)\(m<2\)

Kết luận: \(m\in\left(\frac{4}{3};2\right)\)

a: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-3\right)\)

\(=4m^2-8m+4-8m+12\)

\(=4m^2-16m+16\)

\(=\left(2m-4\right)^2>=0\)

Do đó: Phương trình luôn có nghiệm

b: Để phương trình có hai nghiệm trái dấu thì 2m-3<0

hay m<3/2

c: Để phương trình có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia thì ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1-2x_2=0\\x_1+x_2=2m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x_2=-2m+2\\x_1=2x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-2}{3}\\x_1=\dfrac{4m-4}{3}\end{matrix}\right.\)

Ta có: \(x_1x_2=2m-3\)

\(\Leftrightarrow2m-3=\dfrac{2m-2}{3}\cdot\dfrac{4m-4}{3}\)

\(\Leftrightarrow8\left(m-1\right)^2=9\left(2m-3\right)\)

\(\Leftrightarrow8m^2-16m+8-18m+27=0\)

\(\Leftrightarrow8m^2-34m+35=0\)

\(\text{Δ}=\left(-34\right)^2-4\cdot8\cdot35=36>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{34-6}{16}=\dfrac{28}{16}=\dfrac{7}{4}\\m_2=\dfrac{34+6}{16}=\dfrac{40}{16}=\dfrac{5}{2}\end{matrix}\right.\)