chứng minh rằng có hai số tự nhiên bất kì không thuộc một số phần tử các hợp chất trong mỗi phân số tự nhiên không tồn tại trong một số các phần tử trong hệ huong trình theo giả thiết
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
22 tháng 6 2017
1. a) A = { x\(\in\)N | x\(⋮\)5 | x\(\le\)100}
b) B = { x\(\in\)N* | x\(⋮\)11 | x < 100}
c) C = { x\(\in\)N* | x : 3 dư 1 | x < 50}
2. A = { 14; 23; 32; 41; 50}
3. Cách 1: A = { 0; 1; 2; 3; 4; 5; 6; 7; 8; 9}
Cách 2: A = { x\(\in\) N | x < 10}
4. a. A = { 22; 24; 26; 28} có 4 phần tử.
B = { 27; 28; 29; 30; 31; 32} có 6 phần tử.
b. C = { 22; 24; 26}
c. D = { 27; 29; 30; 31; 32}