Cho hình thang ABCD có đáy AB=4/7 đáy DC.Nối A với C,nối B với D,chúng cắt nha tại điểm M.Biết diện tích tam giác BMC là 15cm2.Tính diện tích hình thang ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S tam giác CMD là:
15 : 4.7 = 26,25 (cm2 )
S tam giác BCD là:
15 + 26,25 = 41,25(cm2 )
S tam giác ABC là:
41,25 : 7. 4 = 1657 (cm2 )
S hình thang ABCD là:
23,57 + 41,25 = 64,82(cm2 )
diện tích hình tam giác CMD là:
15 ÷ 4 × 7 = 26,25 (cm2)
diện tích hình tam giác BCD là:
15 + 26,25 = 41,25 (cm2)
Diện tích tam giác ABC là:
41,25 ÷ 7 × 4 = 1657 ( cm2)
Diện tích hình thang ABCD là:
23,57 + 41,25 = 64,82 ( cm2)
Đ/s : 64,82 cm2
Xét tam giác \(ABC\) và tam giác \(ACD\) có \(\frac{AD}{CD}=\frac{4}{7}\) khoảng cách từ \(A\) xuống \(DC\) bằng khoảng cách từ \(C\) xuống \(AB\) nên \(\frac{S_{ABC}}{S_{ACD}}=\frac{4}{7}\)
Xét tam giác \(ABC\) và tam giác \(ACD\) có chung đáy \(AC\)\(\frac{S_{ABC}}{S_{ACD}}=\frac{4}{7}\) nên khoảng cách từ \(B\) đến \(AC\) bằng \(\frac{4}{7}\) khoảng cách từ \(D\) đến \(AC\)
Xét tam giác \(BMC\) và tam giác \(DMC\) có chung đáy \(MC\) khoảng cách từ \(B\)đến \(AC\) bằng\(\frac{4}{7}\) khoảng cách từ \(D\) đến \(AC\) nên \(\frac{S_{BMC}}{S_{CMD}}=\frac{4}{7}\)
Diện tích tam giác \(CMD\) là:
\(15\div4\times7=26,25\)( cm2 )
Diện tích tam giác \(BCD\) là:
\(15+26,25=41,25\)( cm2 )
Diện tích tam giác \(ABC\) là:
\(41,25\div7\times4=\frac{165}{7}=23,57\)( cm2 )
Diện tích hình thang \(ABCD\) là:
\(23,57+41,25=64,82\)( cm2 )
Đáp số : \(64,82\)cm2
*SABC=1/3SABCD(Vì có đáy = đáy bé và có chiều cao=chiều cao hình thang ABCD)
=>SABCD=24x3=72 cm2
Đáp số: 72 cm2
Giải đầy đủ nha
Xét tam giác ABC và tam giác ACD có \(\frac{AB}{CD}\)=\(\frac{4}{7}\) , khoảng cách từ A xuống DC bằng khoảng cách từ C xuống AB nên \(\frac{S_{ABC}}{S_{ACD}}\)
Xét tam giác ABC và tam giác ACD có chung đáy AC, \(\frac{S_{ABC}}{S_{ACD}}\)=\(\frac{4}{7}\)nên khoảng cách từ B đến AC bằng \(\frac{4}{7}\) khoảng cách từ D đến AC
Xét tam giác BMC và tam giác DMC có chung đáy MC, khoảng cách từ B đến AC bằng \(\frac{4}{7}\) khoảng cách từ D đến AC nên \(\frac{S_{BMC}}{S_{CMD}}\)=\(\frac{4}{7}\)
Diện tích tam giác CMD là:
15 : 4 x 7 = 26,25 (cm2)
Diện tích tam giác BCD là:
15 + 26,25 = 41,25 (cm2)
Diện tích tam giác ABC là:
41,25 : 7 x 4 = 1657 (cm2)
Diện tích hình thang ABCD là:
23,57 + 41,25=64,82 (cm2)
Đ/S: 64,82 cm2