Cho (O, R) và (O,r) (R>r). A thuộc (O).
Kẻ 2 dây AB và AC của (O,R) cắt (O,r) tại M, N và E, F (hình vẽ)
Cho MN > EF. So sánh 2 cung nhỏ AB và AC của (O,R)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của MB với (O;r) là H, giao điểm của MD với (O;r) là K
Theo đề, ta có: OH\(\perp\)MB tại H và OK\(\perp\)MD tại K
Xét (O) có
OH,OK là khoảng cách từ tâm O đến cách dây AB,CD
AB,CD là các dây
OH=OK(=r)
Do đó: AB=CD
ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
=>HA=HB=AB/2
Ta có: ΔOCD cân tại O
mà OK là đường cao
nên K là trung điểm của CD
=>\(CK=KD=\dfrac{CD}{2}\)
mà CD=AB và \(HA=HB=\dfrac{AB}{2}\)
nên CK=KD=HA=HB
Xét ΔOHM vuông tại H và ΔOKM vuông tại K có
OH=OK
OM chung
Do đó: ΔOHM=ΔOKM
=>MH=MK
Ta có: MA+AH=MH
MC+CK=MK
mà AH=CK và MH=MK
nên MA=MC
Xét ΔMBD có \(\dfrac{MA}{AB}=\dfrac{MC}{CD}\)
nên AC//BD
=>\(sđ\stackrel\frown{AB}=sđ\stackrel\frown{CD}\)
Gọi H,K lần lượt là các tiếp điểm của các tiếp tuyến cắt nhau tại M của (O;r)
=>OH=OK và OH\(\perp\)MB tại H và OK\(\perp\)MD tại K
Xét (O,R) có
OH,OK lần lượt là khoảng cách từ O xuống các dây AB,CD
OH=OK
Do đó: \(sđ\stackrel\frown{AB}=sđ\stackrel\frown{CD}\)
Gọi a là bán kính của đường tròn bán kính R
b là bán kính của đường tròn bán kính R'
c là bán kính của đường tròn bán kính R''
Vì đường tròn (O,R) tiếp xúc với đường tròn (O',R') nên OO' = R + R' (Hệ thức giữa đoạn nối tâm và bán kính)
hay a + b = 5 (cm) (1)
Tương tự ta cũng có: b + c = 6 (cm) (2); a + c = 7 (cm) (3)
Trừ 2 vế của (1) với (2) ta được:
a - c = -1 (4)
Cộng 2 vế của (4) với (3) ta được:
2a = 6 \(\Leftrightarrow\) a = 3
hay R = 3 (cm)
\(\Rightarrow\) b = 5 - a = 5 - 3 = 2 (cm) hay R' = 2 (cm)
\(\Rightarrow\) c = 7 - a = 7 - 3 = 4 (cm) hay R'' = 4 (cm)
Vậy R = 3 cm; R' = 2 cm; R'' = 4 cm
Chúc bn học tốt!
Hai đường tròn (O;R) và (O';R') tiếp xúc ngoài nhau (gt)
Nên R + R' = OO'. Ta có R + R' =5(cm)
Hai đường tròn (O'R') và (O'';R'') tiếp xúc ngoài nhau(gt)
Nên R' +R'' = OO''
Ta có R'+R''=7cm
Hai đường tròn (O;R) và (O'';R'') tiếp xúc ngoài nhau (gt)
Nên R+ R'' = OO''
Ta có R+R''=6cm
do đó R + R' + R' +R'' +R +R'' = 5+7+6
=> 2(R + R' +R'') =18 => R + R' +R'' = 9
Ta có R'' = (R+R' +R'') -(R+R') = 9-5 =4cm
R = (R+R' + R'') - (R + R'') = 9-6=3cm
Qua phép vị tự tỉ số k biến đường tròn (O; R) thành (O’; R).
Ta có: R’ = R nên |k| = 1
Suy ra: k = 1 hoặc k = -1
* Nếu k= 1 thì phép tự là phép đồng nhất: ( mâu thuẫn giả thiết)
* Khi k=-1 thì tâm vị tự là trung điểm của OO’.
Đáp án B
1: \(O_2D=O_2A+CD=\dfrac{AC}{2}+\dfrac{BC}{2}=\dfrac{AB}{2}=R_1\)
góc O2MD=góc O2MC+góc CMD
=1/2*sđ cung CM+góc MCA
=90 độ
=>DM là tiếp tuyến của (O2)
PD^2=BD*DA=DC*BA=DM^2=O2D-R2^2
=>PD^2=R1^2-R2^2
2: Xet ΔD1BD vuông tại D1 và ΔD4BD vuông tại D4 có
BD chung
góc D1BD=góc D4BD
=>ΔD1BD=ΔD4BD
=>D1=D4
CM tương tự, ta được: DD2=DD3, BP=BQ, PA=PB
=>D1D+D2D+D3D+D4D<=1/2(BP+PA+AQ+QB)
=>2*(D1D+D2D)<=PA+PB
PB^2=BD^2+DP^2>=2*DB*DP
=>\(PB>=\dfrac{2\cdot DB\cdot DP}{PB}=2\cdot D_1D\)
Chứng minh tương tự,ta được: \(AP>=\dfrac{2\cdot DA\cdot DP}{PA}=2\cdot D_2D\)
=>ĐPCM
Vì : \(\overrightarrow{MN}=\overrightarrow{OA}\Rightarrow T_{\overrightarrow{OA}}:M\rightarrow N\). Do đó N nằm trên đường tròn ảnh của (O;R) . Mặt khác N lại nằm trên (O’;R’) do đó N là giao của đường tròn ảnh với với (O’;R’) . Từ đó suy ra cách tìm :
- Vè đường tròn tâm A bán kính R , đường tròn náy cắt (O’;R’) tại N
- Kẻ đường thẳng d qua N và song song với OA , suy ra d cắt (O;R) tại M