Cho đa thức: \(f\left(x\right)=x+x^2-6x^3+3x^4+2x^2+6x-2x^4+1\)
1. Thu gọn, rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến \(x\)
2. Xác định, bậc của đa thức, hệ số tự do, hệ số cao nhất
3. Tính \(f\left(-1\right),f\left(0\right),f\left(1\right),f\left(-a\right)\)
1. \(f\left(x\right)=x+x^2-6x^3+3x^4+2x^2+6x-2x^4+1\)
\(\Rightarrow f\left(x\right)=7x+3x^2-6x^3+x^4+1\)
Sắp xếp theo lũy thừa giảm dần của biến x:
\(f\left(x\right)=x^4-6x^3+3x^2+7x+1\)
2. Bậc của đa thức: 4
Hệ số tự do: 1
Hệ số cao nhất: 7
3. \(f\left(-1\right)=\left(-1\right)^4-6.\left(-1\right)^3+3.\left(-1\right)^2+7.\left(-1\right)+1=4\)
\(f\left(0\right)=0^4-6.0^3+3.0^2+7.0+1=1\)
\(f\left(1\right)=1^4-6.1^3+3.1^2+7.1+1=6\)
\(f\left(-a\right)=\left(-a\right)^4-6.\left(-a\right)^3+3.\left(-a\right)^2+7.\left(-a\right)+1=3a+1\)
\(\)