Chứng tỏ rằng (5 + 5mũ2 + 5mũ3 + 5mũ4 + ...+ 5mũ29 + 5mũ30) chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5+5^2+5^3+5^4+...+5^{39}+5^{40}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{39}+5^{40}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{39}\left(1+5\right)\)
\(=6\left(5+5^3+...+5^{39}\right)⋮6\)
Suy ra \(A⋮3,A⋮2\).
đặt A=5+52+53 +...+599+5100
= (5+52) +...+(599+5100)
= 5(1+5)+53(1+5)...+599(1+5)
=6.(5+53+..+599)
=>6.(5+53+..+599) chia hết cho 6
đăt B= 2+22+23 +..+2100
B= (2+22+23+24+25) +....+(296+297+299+2100)
B=2.(1+2+4+8+16)+26(1+2+4+8+16)+...+296(1+2+4+8+16)
=31.(2+22+23 +...+2100)
=> 31.(2+22+23 +...+2100) chia hêt cho 31
nêú có sai sót j mong bn thông cảm!!!
ta có: S= 1 + 5 + 5^2 + 5^3 + .......+ 5^2015
=> S=(1+5+5^2+5^3)+(5^4+5^4+5^6+5^7)+.........+(5^2012+5^2013+5^2014+5^2015)
=> S=1.(1+5+5^2+5^3)+5^4.(1+5+5^2+5^3)+..........+5^2012.(1+5+5^2+5^3)
=>S=1.156+5^4.156+.........+5^2012.156
=>S=156.(1+5^4+.......+5^2012)
=>S=13.12.(1+5^4+.......+5^2012) chia hết cho 13
vậy S chia hết cho 13. ( đpcm)
CHÚC CÁC BẠN HỌC GIỎI.
\(S=1-5+5^2-5^3+...+5^{58}-5^{59}\)
\(5.S=5-5^2+5^3-5^4+...+5^{59}-5^{60}\)
\(5.S-S=1-5^{60}\)
\(4.S=1-5^{60}\)
\(S=\frac{1-5^{60}}{4}\)
Vậy\(S=\frac{1-5^{60}}{4}\)
a, 21.52.17 = 2.25.17 = 50.17 = 850
b, 22 + 23 + 24 = 4 + 8 + 16 = 28
c, 25.3 + 24:8 + 50: 52
= 32.3 + 16:8 + 50:25
=96 + 2 + 2
= 100
d, 112 - 102 - 32
= 121 - 100 - 9
= 21 - 9
= 12
e, 13 + 23 + 33 + 43 + 53
= ( 1+ 2+3+4+5)2
= 152
= 225
a,63:62+94=6+94=100
b,135-54:52=135-52=135-25=110
c,73:7-45:43=72-42=49-16=33
d,87:84:82+8=8+8=16.
\(a,6^3:6^2+94=6+94=100\\ b,135-5^4:5^2=135-5^2=135-25=110\\ c,7^3:7-4^5:4^3=7^2-4^2=49-16=33\\ d,8^7:8^4:8^2+8=8^2+8=64+8=72\)
5+52+53+.....+529+530
= (5+52)+ (53+54)+.............+(529+530)
= 5(1+5) + 53(1+5)+....+529(1+5)
= 5.6 + 53.6 +....+529.6
= 6( 5+53+....+529)
Vì 6 \(⋮\)6 nên 6( 5+53+....+529)\(⋮\)6
Vậy.....